Историческое развитие жизни на земле презентация. Развитие жизни на Земле презентация к уроку по биологии (9 класс) на тему. Развитие жизни на Земле

Историческое развитие жизни на земле презентация. Развитие жизни на Земле презентация к уроку по биологии (9 класс) на тему. Развитие жизни на Земле

На этом уроке мы рассмотрим тетраэдр и его элементы (ребро тетраэдра, поверхность, грани, вершины). И решим несколько задач на построение сечений в тетраэдре, используя общий метод для построения сечений.

Тема: Параллельность прямых и плоскостей

Урок: Тетраэдр. Задачи на построение сечений в тетраэдре

Как построить тетраэдр? Возьмем произвольный треугольник АВС . Произвольную точку D , не лежащую в плоскости этого треугольника. Получим 4 треугольника. Поверхность, образованная этими 4 треугольниками, и называется тетраэдром (Рис. 1.). Внутренние точки, ограниченные этой поверхностью, также входят в состав тетраэдра.

Рис. 1. Тетраэдр АВСD

Элементы тетраэдра
А, B , C , D - вершины тетраэдра .
AB , AC , AD , BC , BD , CD - ребра тетраэдра .
ABC , ABD , BDC , ADC - грани тетраэдра .

Замечание: можно принять плоскость АВС за основание тетраэдра , и тогда точка D является вершиной тетраэдра . Каждое ребро тетраэдра является пересечением двух плоскостей. Например, ребро АВ - это пересечение плоскостей АВ D и АВС . Каждая вершина тетраэдра - это пересечение трех плоскостей. Вершина А лежит в плоскостях АВС , АВ D , А D С . Точка А - это пересечение трех означенных плоскостей. Этот факт записывается следующим образом: А = АВС АВ D АС D .

Тетраэдр определение

Итак, тетраэдр - это поверхность, образованная четырмя треугольниками.

Ребро тетраэдра - линия перечесения двух плоскостей тетраэдра.

Составьте из 6 спичек 4 равных треугольника. На плоскости решить задачу не получается. А в пространстве это сделать легко. Возьмем тетраэдр. 6 спичек - это его ребра, четыре грани тетраэдра и будут четырьмя равными треугольниками. Задача решена.

Дан тетраэдр АВС D . Точка M принадлежит ребру тетраэдра АВ , точка N принадлежит ребру тетраэдра В D и точка Р принадлежит ребру D С (Рис. 2.). Постройте сечение тетраэдра плоскостью MNP .

Рис. 2. Рисунок к задаче 2 - Построить сечение тетраэдра плоскостью

Решение :
Рассмотрим грань тетраэдра D ВС . В этой грани точки N и P принадлежат грани D ВС , а значит, и тетраэдру. Но по условию точки N, P принадлежат секущей плоскости. Значит, NP - это линия пересечения двух плоскостей: плоскости грани D ВС и секущей плоскости. Предположим, что прямые NP и ВС не параллельны. Они лежат в одной плоскости D ВС. Найдем точку пересечения прямых NP и ВС . Обозначим ее Е (Рис. 3.).

Рис. 3. Рисунок к задаче 2. Нахождение точки Е

Точка Е принадлежит плоскости сечения MNP , так как она лежит на прямой , а прямая целиком лежит в плоскости сечения MNP .

Также точка Е лежит в плоскости АВС , потому что она лежит на прямой ВС из плоскости АВС .

Получаем, что ЕМ - линия пересечения плоскостей АВС и MNP, так как точки Е и М лежат одновременно в двух плоскостях - АВС и MNP. Соединим точки М и Е , и продолжим прямую ЕМ до пересечения с прямой АС . Точку пересечения прямых ЕМ и АС обозначим Q .

Итак, в этом случае NPQМ - искомое сечение.

Рис. 4. Рисунок к задаче 2.Решение задачи 2

Рассмотрим теперь случай, когда NP параллельна BC . Если прямая NP параллельна какой-нибудь прямой, например, прямой ВС из плоскости АВС , то прямая NP параллельна всей плоскости АВС .

Искомая плоскость сечения проходит через прямую NP , параллельную плоскости АВС , и пересекает плоскость по прямой МQ . Значит, линия пересечения МQ параллельна прямой NP . Получаем, NPQМ - искомое сечение.

Точка М лежит на боковой грани А D В тетраэдра АВС D . Постройте сечение тетраэдра плоскостью, которое проходит через точку М параллельно основанию АВС .

Рис. 5. Рисунок к задаче 3 Построить сечение тетраэдра плоскостью

Решение:
Секущая плоскость φ параллельна плоскости АВС по условию, значит, эта плоскость φ параллельна прямым АВ , АС , ВС .
В плоскости АВ D через точку М проведем прямую PQ параллельно АВ (рис. 5). Прямая PQ лежит в плоскости АВ D . Аналогично в плоскости АС D через точку Р проведем прямую РR параллельно АС . Получили точку R . Две пересекающиеся прямые PQ и РR плоскости РQR соответственно параллельны двум пересекающимся прямым АВ и АС плоскости АВС , значит, плоскости АВС и РQR параллельны. РQR - искомое сечение. Задача решена.

Дан тетраэдр АВС D . Точка М - точка внутренняя, точка грани тетраэдра АВ D . N - внутренняя точка отрезка D С (Рис. 6.). Построить точку пересечения прямой NM и плоскости АВС .

Рис. 6. Рисунок к задаче 4

Решение:
Для решения построим вспомогательную плоскость D МN . Пусть прямая D М пересекает прямую АВ в точке К (Рис. 7.). Тогда, СК D - это сечение плоскости D МN и тетраэдра. В плоскости D МN лежит и прямая NM , и полученная прямая СК . Значит, если NM не параллельна СК , то они пересекутся в некоторой точке Р . Точка Р и будет искомая точка пересечения прямой NM и плоскости АВС .

Рис. 7. Рисунок к задаче 4. Решение задачи 4

Дан тетраэдр АВС D . М - внутренняя точка грани АВ D . Р - внутренняя точка грани АВС . N - внутренняя точка ребра D С (Рис. 8.). Построить сечение тетраэдра плоскостью, проходящей через точки М , N и Р .

Рис. 8. Рисунок к задаче 5 Построить сечение тетраэдра плоскостью

Решение:
Рассмотрим первый случай, когда прямая MN не параллельна плоскости АВС . В прошлой задаче мы нашли точку пересечения прямой MN и плоскости АВС . Это точка К , она получена с помощью вспомогательной плоскости D МN , т.е. мы проводим D М и получаем точку F . Проводим СF и на пересечении MN получаем точку К .

Рис. 9. Рисунок к задаче 5. Нахождение точки К

Проведем прямую КР . Прямая КР лежит и в плоскости сечения, и в плоскости АВС . Получаем точки Р 1 и Р 2 . Соединяем Р 1 и М и на продолжении получаем точку М 1 . Соединяем точку Р 2 и N . В результате получаем искомое сечение Р 1 Р 2 NМ 1 . Задача в первом случае решена.
Рассмотрим второй случай, когда прямая MN параллельна плоскости АВС . Плоскость МNР проходит через прямую МN параллельную плоскости АВС и пересекает плоскость АВС по некоторой прямой Р 1 Р 2 , тогда прямая Р 1 Р 2 параллельна данной прямой MN (Рис. 10.).

Рис. 10. Рисунок к задаче 5. Искомое сечение

Теперь проведем прямую Р 1 М и получим точку М 1 . Р 1 Р 2 NМ 1 - искомое сечение.

Итак, мы рассмотрели тетраэдр, решили некоторые типовые задачи на тетраэдр. На следующем уроке мы рассмотрим параллелепипед.

1. И. М. Смирнова, В. А. Смирнов. - 5-е издание, исправленное и дополненное - М. : Мнемозина, 2008. - 288 с. : ил. Геометрия. 10-11 класс: учебник для учащихся общеобразовательных учреждений (базовый и профильный уровни)

2. Шарыгин И. Ф. - М.: Дрофа, 1999. - 208 с.: ил. Геометрия. 10-11 класс: Учебник для общеобразовательных учебных заведений

3. Е. В. Потоскуев, Л. И. Звалич. - 6-е издание, стереотип. - М. : Дрофа, 008. - 233 с. :ил. Геометрия. 10 класс: Учебник для общеобразовательных учреждений с углубленным и профильным изучением математики

Дополнительные веб-ресурсы

2. Как построить сечение тетраэдра. Математика ().

3. Фестиваль педагогических идей ().

Сделай дома задачи по теме "Тетраэдр", как находить ребро тетраэдра, грани тетраэдра, вершины и поверхность тетраэдра

1. Геометрия. 10-11 класс: учебник для учащихся общеобразовательных учреждений (базовый и профильный уровни) И. М. Смирнова, В. А. Смирнов. - 5-е издание, исправленное и дополненное - М.: Мнемозина, 2008. - 288 с.: ил. Задания 18, 19, 20 стр. 50

2. Точка Е середина ребра МА тетраэдра МАВС . Постройте сечение тетраэдра плоскостью, проходящей через точки В, С и Е .

3. В тетраэдре МАВС точка М принадлежит грани АМВ, точка Р - грани ВМС, точка К - ребру АС. Постройте сечение тетраэдра плоскостью, проходящей через точки М, Р, К.

4. Какие фигуры могут получиться в результате пересечения плоскостью тетраэдра?

На этом уроке мы рассмотрим тетраэдр и его элементы (ребро тетраэдра, поверхность, грани, вершины). И решим несколько задач на построение сечений в тетраэдре, используя общий метод для построения сечений.

Тема: Параллельность прямых и плоскостей

Урок: Тетраэдр. Задачи на построение сечений в тетраэдре

Как построить тетраэдр? Возьмем произвольный треугольник АВС . Произвольную точку D , не лежащую в плоскости этого треугольника. Получим 4 треугольника. Поверхность, образованная этими 4 треугольниками, и называется тетраэдром (Рис. 1.). Внутренние точки, ограниченные этой поверхностью, также входят в состав тетраэдра.

Рис. 1. Тетраэдр АВСD

Элементы тетраэдра
А, B , C , D - вершины тетраэдра .
AB , AC , AD , BC , BD , CD - ребра тетраэдра .
ABC , ABD , BDC , ADC - грани тетраэдра .

Замечание: можно принять плоскость АВС за основание тетраэдра , и тогда точка D является вершиной тетраэдра . Каждое ребро тетраэдра является пересечением двух плоскостей. Например, ребро АВ - это пересечение плоскостей АВ D и АВС . Каждая вершина тетраэдра - это пересечение трех плоскостей. Вершина А лежит в плоскостях АВС , АВ D , А D С . Точка А - это пересечение трех означенных плоскостей. Этот факт записывается следующим образом: А = АВС АВ D АС D .

Тетраэдр определение

Итак, тетраэдр - это поверхность, образованная четырмя треугольниками.

Ребро тетраэдра - линия перечесения двух плоскостей тетраэдра.

Составьте из 6 спичек 4 равных треугольника. На плоскости решить задачу не получается. А в пространстве это сделать легко. Возьмем тетраэдр. 6 спичек - это его ребра, четыре грани тетраэдра и будут четырьмя равными треугольниками. Задача решена.

Дан тетраэдр АВС D . Точка M принадлежит ребру тетраэдра АВ , точка N принадлежит ребру тетраэдра В D и точка Р принадлежит ребру D С (Рис. 2.). Постройте сечение тетраэдра плоскостью MNP .

Рис. 2. Рисунок к задаче 2 - Построить сечение тетраэдра плоскостью

Решение :
Рассмотрим грань тетраэдра D ВС . В этой грани точки N и P принадлежат грани D ВС , а значит, и тетраэдру. Но по условию точки N, P принадлежат секущей плоскости. Значит, NP - это линия пересечения двух плоскостей: плоскости грани D ВС и секущей плоскости. Предположим, что прямые NP и ВС не параллельны. Они лежат в одной плоскости D ВС. Найдем точку пересечения прямых NP и ВС . Обозначим ее Е (Рис. 3.).

Рис. 3. Рисунок к задаче 2. Нахождение точки Е

Точка Е принадлежит плоскости сечения MNP , так как она лежит на прямой , а прямая целиком лежит в плоскости сечения MNP .

Также точка Е лежит в плоскости АВС , потому что она лежит на прямой ВС из плоскости АВС .

Получаем, что ЕМ - линия пересечения плоскостей АВС и MNP, так как точки Е и М лежат одновременно в двух плоскостях - АВС и MNP. Соединим точки М и Е , и продолжим прямую ЕМ до пересечения с прямой АС . Точку пересечения прямых ЕМ и АС обозначим Q .

Итак, в этом случае NPQМ - искомое сечение.

Рис. 4. Рисунок к задаче 2.Решение задачи 2

Рассмотрим теперь случай, когда NP параллельна BC . Если прямая NP параллельна какой-нибудь прямой, например, прямой ВС из плоскости АВС , то прямая NP параллельна всей плоскости АВС .

Искомая плоскость сечения проходит через прямую NP , параллельную плоскости АВС , и пересекает плоскость по прямой МQ . Значит, линия пересечения МQ параллельна прямой NP . Получаем, NPQМ - искомое сечение.

Точка М лежит на боковой грани А D В тетраэдра АВС D . Постройте сечение тетраэдра плоскостью, которое проходит через точку М параллельно основанию АВС .

Рис. 5. Рисунок к задаче 3 Построить сечение тетраэдра плоскостью

Решение:
Секущая плоскость φ параллельна плоскости АВС по условию, значит, эта плоскость φ параллельна прямым АВ , АС , ВС .
В плоскости АВ D через точку М проведем прямую PQ параллельно АВ (рис. 5). Прямая PQ лежит в плоскости АВ D . Аналогично в плоскости АС D через точку Р проведем прямую РR параллельно АС . Получили точку R . Две пересекающиеся прямые PQ и РR плоскости РQR соответственно параллельны двум пересекающимся прямым АВ и АС плоскости АВС , значит, плоскости АВС и РQR параллельны. РQR - искомое сечение. Задача решена.

Дан тетраэдр АВС D . Точка М - точка внутренняя, точка грани тетраэдра АВ D . N - внутренняя точка отрезка D С (Рис. 6.). Построить точку пересечения прямой NM и плоскости АВС .

Рис. 6. Рисунок к задаче 4

Решение:
Для решения построим вспомогательную плоскость D МN . Пусть прямая D М пересекает прямую АВ в точке К (Рис. 7.). Тогда, СК D - это сечение плоскости D МN и тетраэдра. В плоскости D МN лежит и прямая NM , и полученная прямая СК . Значит, если NM не параллельна СК , то они пересекутся в некоторой точке Р . Точка Р и будет искомая точка пересечения прямой NM и плоскости АВС .

Рис. 7. Рисунок к задаче 4. Решение задачи 4

Дан тетраэдр АВС D . М - внутренняя точка грани АВ D . Р - внутренняя точка грани АВС . N - внутренняя точка ребра D С (Рис. 8.). Построить сечение тетраэдра плоскостью, проходящей через точки М , N и Р .

Рис. 8. Рисунок к задаче 5 Построить сечение тетраэдра плоскостью

Решение:
Рассмотрим первый случай, когда прямая MN не параллельна плоскости АВС . В прошлой задаче мы нашли точку пересечения прямой MN и плоскости АВС . Это точка К , она получена с помощью вспомогательной плоскости D МN , т.е. мы проводим D М и получаем точку F . Проводим СF и на пересечении MN получаем точку К .

Рис. 9. Рисунок к задаче 5. Нахождение точки К

Проведем прямую КР . Прямая КР лежит и в плоскости сечения, и в плоскости АВС . Получаем точки Р 1 и Р 2 . Соединяем Р 1 и М и на продолжении получаем точку М 1 . Соединяем точку Р 2 и N . В результате получаем искомое сечение Р 1 Р 2 NМ 1 . Задача в первом случае решена.
Рассмотрим второй случай, когда прямая MN параллельна плоскости АВС . Плоскость МNР проходит через прямую МN параллельную плоскости АВС и пересекает плоскость АВС по некоторой прямой Р 1 Р 2 , тогда прямая Р 1 Р 2 параллельна данной прямой MN (Рис. 10.).

Рис. 10. Рисунок к задаче 5. Искомое сечение

Теперь проведем прямую Р 1 М и получим точку М 1 . Р 1 Р 2 NМ 1 - искомое сечение.

Итак, мы рассмотрели тетраэдр, решили некоторые типовые задачи на тетраэдр. На следующем уроке мы рассмотрим параллелепипед.

1. И. М. Смирнова, В. А. Смирнов. - 5-е издание, исправленное и дополненное - М. : Мнемозина, 2008. - 288 с. : ил. Геометрия. 10-11 класс: учебник для учащихся общеобразовательных учреждений (базовый и профильный уровни)

2. Шарыгин И. Ф. - М.: Дрофа, 1999. - 208 с.: ил. Геометрия. 10-11 класс: Учебник для общеобразовательных учебных заведений

3. Е. В. Потоскуев, Л. И. Звалич. - 6-е издание, стереотип. - М. : Дрофа, 008. - 233 с. :ил. Геометрия. 10 класс: Учебник для общеобразовательных учреждений с углубленным и профильным изучением математики

Дополнительные веб-ресурсы

2. Как построить сечение тетраэдра. Математика ().

3. Фестиваль педагогических идей ().

Сделай дома задачи по теме "Тетраэдр", как находить ребро тетраэдра, грани тетраэдра, вершины и поверхность тетраэдра

1. Геометрия. 10-11 класс: учебник для учащихся общеобразовательных учреждений (базовый и профильный уровни) И. М. Смирнова, В. А. Смирнов. - 5-е издание, исправленное и дополненное - М.: Мнемозина, 2008. - 288 с.: ил. Задания 18, 19, 20 стр. 50

2. Точка Е середина ребра МА тетраэдра МАВС . Постройте сечение тетраэдра плоскостью, проходящей через точки В, С и Е .

3. В тетраэдре МАВС точка М принадлежит грани АМВ, точка Р - грани ВМС, точка К - ребру АС. Постройте сечение тетраэдра плоскостью, проходящей через точки М, Р, К.

4. Какие фигуры могут получиться в результате пересечения плоскостью тетраэдра?

Развитие жизни на Развитие жизни на Земле Земле

Геохронологическая шкала Геохронологическая шкала Геохронологическая шкала ­ Геохронологическая шкала ­ шкала времени, шкала времени, показывающая показывающая последовательность последовательность основных этапов основных этапов геологической истории геологической истории Земли. Земли. Граница каждой из четырех Граница каждой из четырех крупных эр ознаменована крупных эр ознаменована резким изменением изменением резким характера ископаемых характера ископаемых окаменелостей. . окаменелостей

Этапы развития жизни ЭОНЫ Криптозой Фанерозой ЭРЫ Катархей Архей Протерозой Палеозой Мезозой Кайнозой Время

Катархейская эра Катархейская эра Начало: 4500млн. лет назад Начало: Климат: безжизненная Земля, безжизненная Земля, Климат: окутанная ядовитой для окутанная ядовитой для живых существ атмосферой, живых существ атмосферой, лишенной кислорода; гремели лишенной кислорода; гремели вулканические извержения, вулканические извержения, сверкали молнии, жесткое сверкали молнии, жесткое ультрафиолетовое излучение ультрафиолетовое излучение пронизывало атмосферу. пронизывало атмосферу. Образование первичного Образование первичного бульона. бульона.

Внешний облик земли в катархее Внешний облик земли в катархее

Архейская эра (архей) Архейская эра (архей) Начало: 3500 млн. лет назад 3500 млн. лет назад Начало: Климат: активная вулканическая активная вулканическая Климат: деятельность, бескислородные деятельность, бескислородные условия жизни в мелководном условия жизни в мелководном море, развитие кислородной море, развитие кислородной атмосферы атмосферы

Обитатели архея Обитатели архея Бактерии Бактерии Одноклекточные Одноклекточные водоросли водоросли Болото с цианобактериями (виден выделяющийся газ) Цианобактерии Колония сине – зеленых водорослей

Протерозойская эра (протерозой) Протерозойская эра (протерозой) Начало: 2600 млн. лет назад 2600 млн. лет назад Начало: поверхность Климат: поверхность Климат: планеты представляет собой планеты представляет собой голую пустыню, климат голую пустыню, климат холодный, часты холодный, часты оледенения, содержание оледенения, содержание свободного кислорода в свободного кислорода в атмосфере до 1%, активное атмосфере до 1%, активное образование осадочных образование осадочных пород пород Жизнь в морях На суше

Обитатели протерозоя Обитатели протерозоя Растения: одноклеточные и: одноклеточные и Растения многоклеточные водоросли многоклеточные водоросли Животные: одноклеточные, : одноклеточные, Животные кишечнополостные, черви, кишечнополостные, черви, моллюски, первые хордовые. моллюски, первые хордовые. Раковинный моллюск Отложения протерозоя, найденные в Австралии

Жизнь в океане протерозоя Жизнь в океане протерозоя 1 2 3 Широко распространены простейшие, губки, черви, предки трилобитов и иглокожих; предположительно – первые представители хордовых ­ бесчерепные 4 5 Распространены преимущественно одноклеточные зеленые водоросли

Палеозойская эра Палеозойская эра Начало: 570 млн. лет 570 млн. лет Начало: назад назад Климат: активное активное Климат: горообразование, горообразование, наступления и наступления и отступления моря, отступления моря, оледенения сменяются оледенения сменяются потеплениями, сухой потеплениями, сухой климат влажным. В климат влажным. В конце эры – образование конце эры – образование болот и рифов. болот и рифов. На суше Болото

Обитатели палеозоя Обитатели палеозоя Трилобит Ракоскорпион Насекомые Бесчелюстные Рыбы Котилозавры – предки рептилий Стегоцефал –первое наземное позвоночное

Обитатели палеозоя Обитатели палеозоя Псилофиты – первые Псилофиты – первые наземные растения наземные растения Древовидные Древовидные папоротники папоротники Хвойные Хвойные Плауновидные Плауновидные

Мезозойская эра Мезозойская эра Начало: 230млн. лет 230млн. лет Начало: назад назад Климат: ослабление ослабление Климат: климатической климатической зональности, зональности, движение движение материков, климат материков, климат влажный и теплый, влажный и теплый, горообразование. горообразование.

Тема урока:

«Этапы развития жизни на Земле».


Какая наука изучает историю живых организмов по сохранившимся останкам?

Палеонтология.


Развитие жизни на Земле.

Эоны

Криптозой

Фанерозой

явная жизнь

скрытая жизнь

Палеозой

Кайнозой


Развитие жизни на Земле.

Продолжительность

Архей

Основные события

Палеозой

Мезозой

Кайнозой


Развитие жизни на Земле.

Продолжительность

Основные события

Архейская эра

Эра прокариот: бактерий и цианобактерий. Появляется фотосинтез, и как следствие этого в атмосфере начинает накапливаться кислород.

от 3,5 до 2,5

млрд. лет назад

Строматолиты


Развитие жизни на Земле.

Продолжительность

Основные события

Протерозой-ская эра

Формирование озонового слоя. Появляются первые эукариоты одноклеточные водоросли и простейшие. Начался процесс почвообразования. Появился половой процесс и многоклеточность.

Конец эры – разнообразие эукариот (простейшие, медузы, водоросли, губки, кораллы, кольчатые черви.

от 2,5 млрд. до 534 млн. лет назад



Развитие жизни на Земле.

Продолжительность

Основные события

Палеозойская эра

На Земле появились трилобиты , а также организмы, обладающие минеральными скелетами (фораминиферы, моллюски).

от 534 до 248 млн. лет назад

фораминиферы

моллюск

трилобиты


Развитие жизни на Земле.

Продолжительность

Основные события

Палеозойская эра

Появляются ракоскорпионы , иглокожие , первые настоящие позвоночные . Важнейшее событие – выход растений, грибов и животных на сушу.

от 534 до 248 млн. лет назад

иглокожие

ракоскорпион

панцирные рыбы


Развитие жизни на Земле.

Продолжительность

Основные события

Палеозойская эра

В середине эры господствуют хрящевые рыбы (акулы, скаты), появляются первые костные рыбы , двоякодышащие , давшие начало земноводным .

от 534 до 248 млн. лет назад

Стегоцефал

Латимерия


Развитие жизни на Земле.

Продолжительность

Основные события

Палеозойская эра

Появились мхи, хвощи, плауны, папоротники (в конце палеозоя они вымерли, образовав залежи каменного угля). В конце эры появляются рептилии, насекомые и голосеменные растения.

от 534 до 248 млн. лет назад


Развитие жизни на Земле.

Продолжительность

Основные события

Мезозойская эра

Появляются крокодилы и черепахи , первые млекопитающие (яйцекладущие, сумчатые).

от 248 до 65 млн. лет назад

Ехидна

Утконос


Развитие жизни на Земле.

Продолжительность

Основные события

Мезозойская эра

Появляются археоптериксы (предки птиц). В конце эры появляются высшие млекопитающие , настоящие птицы , покрытосеменные растения. Рептилии почти все в конце мезозоя вымирают.

от 248 до 65 млн. лет назад

Геттерия

Горгонопсид

Цинодонт

Археоптерикс


Развитие жизни на Земле.

Продолжительность

Основные события

Кайнозойская эра

Господствуют млекопитающие , птицы , насекомые и покрытосеменные растения .

Появляются первые человекообразные обезьяны , формируются виды растений и животных, близкие к современным.

Конец эры – появление человека .

от 65 млн. лет и до настоящего времени


Домашнее задание:

просмотров