Микроорганизмы в почвах. Организмы обитающие в почве: животный мир, бактерии, грибы и водоросли Какие микроорганизмы чаще всего встречаются в почве

Микроорганизмы в почвах. Организмы обитающие в почве: животный мир, бактерии, грибы и водоросли Какие микроорганизмы чаще всего встречаются в почве


Почва - главный резервуар и естественная среда обитания микроорганизмов, принимающих участие в процессах ее формирования и самоочищения, а также в круговороте веществ (азота, углерода, серы, железа) в природе. Помимо неорганических веществ, почва состоит из органических соединений, образующихся в результате гибели и разложения живых существ. Микроорганизмы почвы обитают в водных и коллоидных плёнках, обволакивающих почвенные частицы. Состав микрофлоры почвы разнообразен и включает преимущественно спорообразующие бактерии, актиномицеты, спирохеты, архебактерии, простейшие, сине-зелёные водоросли, микоплазмы, грибы и вирусы. Состав микрофлоры зависит от вида почвы, способов её обработки, содержания органических веществ, влажности, климатических условий и других причин. В песчаных почвах преобладают аэробные организмы, в глинистых- анаэробы.

Число бактерий в почве. В почве содержится огромное число бактерий. Раньше их число измерялось сотнями тысяч на один грамм почвы. С.Н. Виноградский (1924) разработал метод непосредственного микроскопического подсчета бактерий в почве путем их окраски. После этого стало ясно, что число бактерий измеряется сотнями миллионов в 1 г. В бедных тундровых или песчаных почвах пустыни их насчитывается до J500 миллионов, в слабоподзолистых почвах - до одного миллиарда, а в богатых органическим веществом (чернозем) - до двух миллиардов и выше.

Два миллиарда бактерий в 1 г почвы составляют около 3% сухой массы почвы. Такое большое число бактерий позволяет считать, что большинство процессов, происходящих в почве, носит биологический характер, т.е. связано с жизнедеятельностью бактерий.

Если бы процесс накопления азота, так же как и углерода, шел только в одну сторону, то жизнь стала бы скоро на Земле невозможной из-за обилия неразложившихся органических остатков. Мы уже знаем, что жизнедеятельность бактерий является причиной разложения белковых веществ.

Разложение белков бактериями. Бактерии, разлагающие белковые вещества на более простые составные части, называются гнилостными бактериями или аммонификаторами, так как в результате разложения белков в среде накапливается аммиак. Разлагая сложные белковые вещества на простые минеральные соединения, бактерии сами питаются продуктами разложения и размножаются. Однако образуемая ими масса тел составляет лишь ничтожную долю от разложившегося вещества. В этой минерализующей деятельности и заключается та огромная полезная роль гнилостных бактерий, которую они играют в природе.

Процесс гниения протекает как в анаэробных, так и в аэробных условиях. Особенно быстро он проходит в аэробных условиях.

В факультативно-анаэробных условиях гниение белков осуществляется целым рядом бактерий. Из них можно отметить кишечную палочку и протея.

В аэробных условиях разложение белков производит сенная палочка и другие спорообразующие формы. Из неспорообразующих форм можно упомянуть небольшую палочку (1-2 мкм) - псевдомонас.

При гниении образуются вода, углекислый газ, аммиак, сероводород, метилмеркаптан (CH 3 SH). Очень характерными продуктами анаэробного расщепления белков являются дурно пахнущие продукты индол и скатол, возникающие в результате частичного разрушения аминокислоты триптофана в анаэробных условиях.

Высушенное белковое вещество не разлагается бактериями и может сохраняться очень долго. Сушеное или прокопченное мясо, сухой яичный порошок не портятся, если их хранить в сухом месте.

Одной из специальных групп аммонификаторов являются бактерии, разлагающие мочевину. Мочевина - главная составная часть мочи человека и большинства животных. Человек выделяет бактерии, разлагающие в день от 30 до 50 г мочевины. Под влиянием бактерий мочевина разлагается, образуется карбонат аммония. Последний быстро распадается на воду, аммиак и углекислый газ.

Процесс нитрификации. Образовавшийся в результате аммонификации аммиак или используется высшими растениями, или нитрифицируется. Процесс нитрификации заключается в окислении аммиака до азотной кислоты. Первая фаза нитрификации вызывается микробом, окисляющим аммиак до азотистой кислоты. Он получил название нитрозомонас. Вторая фаза вызывается бактерией нитробактер, окисляющей азотистую кислоту до азотной. В почве азотистая кислота не накапливается, так как обе эти бактерии встречаются всегда вместе, находясь в своеобразном симбиозе.

Нитрозомонас представляет собой снабженную жгутиком шарообразную бактерию, а нитробактер неподвижен и является маленькой палочкой. На первом этапе нитрификации выделяется больше энергии, чем на втором.

В первой фазе нитрификации выделяется 663,6 Дж (или 158 кал):

Во второй фазе нитрификации энергии освобождается значительно меньше:

Нитрификаторы синтезируют органическое вещество путем хемосинтеза за счет энергии окисления аммиака в азотистую кислоту, а азотистой кислоты в азотную. Нитрификаторы, так же как и зеленые растения, используют для питания углекислый газ.

С.Н. Виноградский обнаружил очень высокую чувствительность нитрификаторов к органическому веществу, которое действует на них как яд, причем нитрозомонас более чувствителен к органическому веществу, чем нитробактер. Малые концентрации органического вещества задерживают рост бактерий, а несколько большие окончательно его останавливают.

Нитрификация в почве. Нитрификация в почве идет несколько отлично от нитрификации в лабораторной обстановке. В первую очередь это касается влияния на этот процесс органического вещества. Если в лабораторной обстановке нитрификаторы проявляют очень высокую чувствительность к органическому веществу и в его присутствии не растут, то в природной обстановке наблюдается как раз обратная картина. Наличие органического вещества способствует процессу нитрификации, так как является источником образования аммиака.

Процесс денитрификации. С круговоротом азота в природе связан также и процесс денитрификации, обратный по своей сути процессу азотфиксации. Денитрификацией называется процесс восстановления нитратов до свободного азота.

Процесс денитрификации, в отличие от нитрификации и азотфиксации, вызывается целым рядом малоспецифических микроорганизмов, относящихся к неспороносным палочкам. Денитрифицирующие бактерии являются факультативными анаэробами. В условиях широкого доступа кислорода они денитрификации не производят. Стоит им, однако, попасть в анаэробные условия, как при наличии нитратов и доступного им органического вещества начинается процесс денитрификации. При нехватке кислорода микроорганизмы начинают отнимать его от нитратов, восстанавливая их. Одновременно при этом окисляется усвояемое ими органическое вещество - сахара или соли органических кислот. Наилучшими условиями для протекания процесса денитрификации являются анаэробные условия, наличие нитратов и подходящего для микроорганизмов органического вещества.

Круговорот азота в природе. Подведем итоги по круговороту азота в природе. Высшее растение синтезирует белок в своем теле из связанного минерального азота и углеводов. Растения поедаются животными, которые сами не в состоянии синтезировать белки из углеводов и минерального азота. Отмирая, животные и растения становятся пищей гнилостных бактерий, разлагающих белки до аммиака, эти же бактерии разлагают и белки, находящиеся в навозе. Аммиак усваивается растением или нитрифицируется. Азотфиксаторы связывают атмосферный азот и переводят опять в белковый, который в дальнейшем может разлагаться гнилостными бактериями. Здесь следует еще упомянуть о связывании азота электрическими разрядами в атмосфере, который в виде азотной кислоты с дождем попадает в почву. Так происходит круговорот азота в природе; он переходит из одной формы в другую, подтверждая великий закон природы - закон сохранения вещества, открытый М.В. Ломоносовым.



Многочисленные организмы, населяющие почву, представлены микроорганизмами (бактерии, грибы, актиномицеты, водоросли), позвоночными и беспозвоночными животными. Обычно микроорганизмы концентрируются в самых верхних слоях почвы, куда поступает основная масса органических остатков. В толще микроорганизмы сосредоточены около корней живых растений (в ризосфере).

Роль микроорганизмов в почвообразовании исключительно велика 1)они являются тем активным фактором, с деятельностью которого связаны процессы разложения органических веществ и превращения в почвенный перегной. Микроорганизмы осуществляют ассимиляцию атмосферного азота. Они выделяют биологические вещества, необходимые для синтеза ферментов и белков, витамины, ростовые и другие вещества, являются активнейшим фактором биологического круговорота веществ.

Различные виды микроорганизмов, продуцируя и выделяя во внешнюю среду тот или иной фермент, могут участвовать в узком кругу реакций разрушения и синтеза, определяемых каталитическими свойствами фермента. От деятельности микроорганизмов зависит поступление в почвенный раствор элементов питания растений, а следовательно, плодородие почвы. Микроорганизмы вследствие кратковременности их жизненного цикла и высокой размножаемости сравнительно быстро обогащают почву значительным количеством органического вещества, весьма богатого белком.

По подсчетам И.В.Тюрина, ежегодное поступление в почву сухого микробного вещества может составить до 0,6 т/га. Эта биомасса, богатая протеинами, содержащая много азота, фосфора, калия, имеет большое значение для почвообразования и формирования плодородия почвы.

Бактерии. Среди микроорганизмов почвы бактерии представлены наиболее широко. Вес живой массы их в пахотном горизонте составляет от 3 до 6-7 т/га.

Количество бактерий в почве зависит от ее типа и культурного состояния. Обычно с глубиной численность бактерий уменьшается. Особенно их много в поверхностных горизонтах почв, богатых органическим веществом.

По способу питания бактерии делятся на автотрофные и гетеротрофные.

Автотрофные бактерии усваивают углерод из углекислого газа. Для превращения углерода СО 2 в органические соединения своего тела они используют или энергию солнца (фотосинтез), или химическую энергию окисления некоторых минеральных веществ (хемосинтез). Способностью к фотосинтезу обладает небольшая группа цветных бактерий (зеленые и пурпурные серобактерии), в составе которых находятся фотосинтезирующие пигменты. Эти бактерии – типичные водные организмы. Хемосинтезирующие бактерии широко распространены в почвах. К ним принадлежат нитрифицирующие бактерии, железобактерии, бесцветные серобактерии, водородные и тионовые бактерии.

Гетеротрофные бактерии усваивают углерод готовых органических соединений. Эти бактерии широко встречаются в природе и отличаются специфическим отношением к источникам углерода. Определенные физиологические группы бактерий могут употреблять отдельные органические вещества как источник пищи и энергии, другие же органические соединения могут быть для них непригодными.

Такая специализация по отношению к источникам углерода позволяет вовлекать в биологический круговорот все доступные организмам соединения углерода.

Автотрофные и гетеротрофные бактерии неодинаково относятся к источникам азотного питания. Одни способны фиксировать атмосферный азот (азотфиксаторы), другие усваивают только аммиачный азот (нитрофикаторы), третьи – азот белковых соединений (аммонификаторы).

Для бактерий необходимы также зольные элементы питания (фосфор, калий, сера, кальций, микроэлементы и др.).

По типу дыхания бактерии делятся на аэробные, требующие свободного (молекулярного) кислорода, и анаэробные, не нуждающиеся в нем. Среди анаэробных бактерий встречаются облигатные, развивающиеся без молекулярного кислорода, и условные (факультативные), которые могут жить как без свободного кислорода, так и при его наличии.

Среди бактерий встречаются спороносные и неспороносные виды. Неспороносные бактерии, обладающие менее мощным ферментативным аппаратом, составляют основу ризосферой микрофлоры. Спороносные бактерии способны разрушать более стойкие органические соединения, вследствие чего они в значительных количествах находятся в более глубоких горизонтах почвы.

Подавляющее большинство бактерий лучше всего развивается при нейтральной реакции среды.

Актиномицеты (плесневидные бактерии или лучистые грибы) содержатся в почвах в меньших количествах, чем бактерии, но они очень разнообразны и им принадлежит большая роль в протекающих процессах. Все актиномицеты – аэробные организмы, преимущественно сапрофиты, предпочитают нейтральную реакцию почв. Многие актиномицеты хорошо разлагают клетчатку, лигнин, парафины и воска, а также гумусовые вещества почв с высвобождением содержащихся в них питательных для растений элементов. Некоторые актиномицеты выделяют антибиотики (стрептомицин и др.).

Грибы – это сапрофитные гетеротрофные организмы. В почвах наиболее распространены плесневидные грибы. Эти грибы, имея ветвящийся мицелий, густо переплетают органические остатки в почве. В аэробных условиях они разлагают клетчатку, лигнин, жиры, белки и другие органические соединения. Они участвуют в минерализации гумуса.

Многие почвенные грибы вступают в симбиотические взаимоотношения с растениями, образуя внутреннюю или внешнюю микоризы. Особенно микоризное развитие грибов характерно для древесных и кустарниковых видов растительности. В этом симбиозе гриб получает от растения углеродное питание, а сам обеспечивает растение азотом, образующимся при разложении азотсодержащих органических соединений почвы.

Установлено, что некоторые зеленые растения, особенно из древесных пород, лишенные микоризы, развиваются слабо или совершенно не растут. Поэтому при разведении древесных пород на новых местах в почву вносят соответствующую микоризу (путем обогащения микоризной землей или применением специальных микоризных препаратов).

Водоросли распространены во всех почвах, главным образом в поверхностном слое. Содержат в своих клетках хлорофилл. Благодаря этому водоросли способны ассимилировать углекислый газ. Различают три типа водорослей: зеленые; сине-зеленые и диатомовые.

Жизнедеятельность водорослей зависит от условий увлажнения почвы. В процессе жизнедеятельности они выделяют кислород, поддерживая высокий уровень окислительных процессов. Водоросли оказывают влияние и на азотный режим в почвах. Имеются виды их, способные ассимилировать атмосферный азот. Кроме того, в слизи, окружающей клетки водоросли, хорошо приживается и активно действует азотобактер, фиксирующий атмосферный азот.

Водоросли активно участвуют в процессах выветривания пород и в первичном процессе почвообразования. В сильнокислой и сильнощелочной средах развитие водорослей подавляется.

Лишайники в природе обычно развиты на бедных почвах, на каменистых субстратах, в сосновых борах, в тундре, в пустыне. В благоприятных условиях они вытесняются другими видами растений.

Лишайники состоят из гриба и водоросли, т.е. имеет место симбиоз гриба и водоросли. Гриб обеспечивает водоросли водой и растворенными в ней минеральными веществами; водоросли же вырабатывают углеводы, которые используют гриб. По морфологическим признакам различают лишайники накипные или корковые (эпилитические), проникающие в породу только гифами и развивающие слоевища на ее поверхности, и эндолитические, развивающие и гифы, и слоевища в породе; на поверхность у них выходят только перитеции – плодовые тела. Лишайники разрушают породу биохимически, путем растворения, и механически, при помощи гифов и слоевищ, прочно срастающихся с поверхностью. При отмирании лишайника слоевище отрывается с захватом тонкой пленки породы. Слагающий эту пленку мелкозем, сносимый к подножию скал, в расщелины и различные понижения, и является первичной почвой, на которой поселяются высшие зеленые растения.

С момента поселения лишайников на горных породах начинается более интенсивное биологическое выветривание и первичное почвообразование, в результате формируется почва, в которой накапливаются фосфор, сера, калий, кальций, азот и другие элементы.

Микроорганизмы в почве

Анализ литературы свидетельствует о чрезвычайно важном значение микроорганизмов в почвообразовании и поддержании плодородия почв. Они трансформируют растительные остатки, участвуют в формировании структуры почвы, образовании гумуса и его минерализации. Глобальной является роль микроорганизмов в пополнении биосферы, в том числе грунтов, азотом, мобилизации фосфора из органических и труднорастворимых неорганических соединений. Важным, однако недостаточно исследованным, является участие микроорганизмов в мобилизации калия в агроэкосистемах.

Почва представляет собой биоорганоминеральную систему, обеспечивающую рост культурных растений и, таким образом, необходимые для существования всего живого условия. Одним из основных факторов процесса почвообразования есть функционирование почвенной микрофлоры, содержание которой в 1 г по данным Е.М. Мишустина, достигает миллиардов клеток. Этой микрофлоре свойственна чрезвычайно высокое разнообразие видового состава.

По мнению Р. Тейта, в 1г почвы содержится около 4000 видов микроорганизмов.

Однако, основное их количество не способно расти на питательных средах, которые используют на сегодня для культивирования микроорганизмов. Их природной средой жизнедеятельности может быть организм человека или животного, водные или морские экосистемы, термальные источники, продукты питания и т.д.. Следует отметить, что численность культурабельных клеток в почве может меняться в зависимости от стадии сукцессии экосистемы и, по данным этих исследователей, отношение культурабельных клеток к их общему количеству в ризосфере снижалось от 0,25 до 0,05 в течение первых 30-50 дней выращивания растений. Суммарная масса прокариотных организмов на Земле примерно соответствует биомассе эукариотов.

Среди микрофлоры почвы встречаются представители почти всех видов микроорганизмов, описанных в определителе Берджи. и грибы являются наиболее распространенными и экологически важными фитосимбионтами. Однако другие представители естественных экосистем играют важную роль в их функционировании. Так, было показано, что исключение беспозвоночных из состава биоценоза опада дубового леса в 2-5 раз замедляло его разложения микробного ценоза.

Масса микроорганизмов почвы достигает десятых долей процента от его общей массы. От 0,1 до 1,0% органического вещества почвы представлено клетками различных видов микроорганизмов. Согласно данным болгарских ученых, масса бактерий и микроскопических грибов в луговых экосистемах достигает нескольких тонн на гектар. Максимальная ее количество наблюдалось в осенний период, что авторы связывают с поступлением в почву в это время растительных остатков. Содержание углерода микробной массы составляет от 2 до 10% его общего содержания в тропических почвах и является выше по сравнению с почвами умеренных широт на 1-4%.

Численность микроорганизмов в почве (показатель биогенности почвы) колеблется не только в течение года, но и в течение незначительных промежутков времени в зависимости от его температуры, влажности, состояния растительного покрова и т.д.. Например, в южных регионах на неполивных грунтах в летний засушливый период доминантами являются актиномицеты, а весной и в осенний период - бактерии, численность которых летом значительно снижается.

Увлажнение почвы заметно влияет на состояние микробного ценоза в таких зонах.
Обычно, активизация деятельности микрофлоры почвы происходит в весенний период года.

Функционирования почвенной микрофлоры является одним из важных факторов, способствующих структуризирования почвы. Так, например, развиваясь на поверхности частиц почвы, грибы и актиномицеты окружающих эти частицы мицелием и формируют водостойкие агрегаты, на следующем этапе могут скрепляться гумусом. Определенную роль в этом процессе играют микроорганизмы, которые синтезируют внеклеточные полисахариды.

Роль микроорганизмов в трансформации растительных остатков в почвах и формировании гумуса

Микроорганизмы являются чрезвычайно важным фактором формирования плодородия почвы.

Наличие в грунтовых экосистемах самых разнообразных групп микроорганизмов, которые отличаются по биологической и биохимической специфичностью, приводит огромное их значение в процессах, происходящих в почве. Количественный состав и соотношение отдельных представителей в микробном ценозе почвы значительно зависит от способа обработки почвы, поступления в почву растительных остатков, которые в первую очередь трансформируются под влиянием неспоровых бактерий и микроскопических грибов, а на поздних стадиях этого процесса - бацилл и актиномицетов. Микроорганизмы, «питающихся различными органическими веществами и активность которых связана с поступлением этих веществ в почву» С.М. Виноградский назвал зимогенной микрофлорой, тогда как микроорганизмы, разлагающие гумусовые соединения, он отнес к автохтонной микрофлоры.

Значительное влияние на распространение в почве тех или иных групп микроорганизмов вызывают корневые выделения растений.

Согласно имеющимся данным корневые выделения составляют около 20% от общего количества продуктов фотосинтеза растений. В состав корневых выделений входят углеводы, органические кислоты, аминокислоты, пептиды, алкалоиды, гликозиды, витамины, вещества фенольной природы и т.п.. Среди органических кислот определено яблочную, янтарную, винную, лимонную, фумаровую, щавелевую и другие кислоты.

Показано, что состав корневых экзометаболитив зависит от условий и стадии развития растений. Так, в составе выделений двухсуточных ростков семян томатов преимущественно определялась щавелевая кислота, содержание которой достигало 296 нг в расчете на семя, что составляло 48,9% от общего количества исследуемых органических кислот. В меньших количествах определялись пировиноградная (18,6%), кетоглутаровая (17,3%) и молочная (12,7%) кислоты. После 4 суток проращивания семян в составе экзометаболитов преобладала лимонная кислота, которая вообще не оказывалась после двухсуточного проращивания семян, ее содержимое достигало 2060 нг на 1 семечко, что составляло 53,7% от общего количества органических кислот в этих выделениях. Содержание щавелевой, молочной и пировиноградной кислот достигало соответственно 16,6, 12,3 и 7,6%. В выделениях 14-суточных ростков содержание лимонной кислоты достигало 13630 нг на растение и составил 55% от общего количества органических кислот. Доля щавелевой, яблочной и молочной кислот составляла соответственно 5,7,15,3 и 10,0% от общего количества органических кислот.

Различия в количественном и качественном составе корневых выделений и в трофических потребностях микроорганизмов вызывают значительное влияние на рост в зоне корня представителей микрофлоры разных таксономических групп, а также их антагонистическую активность. Так, при наличии в среде глюкозы Pseudmonas chlororaphis SPB 1217 характеризовался антифунгальной активностью к грибам Fuzarium oxisporum. Зона подавления роста грибов достигала 13 мм. Однако, во время культивирования при тех же условиях другого вида этих бактерий, антифунгальной активности не обнаружено. В среде с целобиозою, наоборот, зона подавления роста гриба бактериями Р. fluorescens SPB 2137 становила 30 мм, а Р. chlororaphis SPB 1217 -12 мм.

Корневые выделения является пищевым субстратом для других компонентов биоценоза почвы, в первую очередь, микроорганизмам, которые интенсивно размножаются в корневой зоне растений, особенно в той части, которая непосредственно прилегает к поверхности корней в радиусе от него не более 2 мм-ризосфере .

Растений является динамичной средой, в которой действует много факторов, которые определяют структуру и состав микробных сообществ, колонизируют ризосферу и ризоплану растений. Исследования структуры и состава этих группировок является фундаментальной задачей для понимания того, как влияют на биологические процессы почвы факторы окружающей среды и практика растениеводства.

Известно, что состав микрофлоры ризосферы различных растений существенно отличается. К тому же, эти различия являются существенными, если сравнить микробные ценозы объема почвы и ризосферы. Кроме того, микрофлора поверхности корня (ризоплана) в определенной степени также отличается от микробного ценоза ризосферы. В ризоплане преобладают грамотрицательные бактерии. Непосредственно на корнях растений оказывается меньшее количество микроорганизмов, чем в прикорневой зоне.

Это может быть обусловлено тем, что корни выделяют не только питательные для микроорганизмов вещества, но и продуцируют , которые ингибируют развитие микроорганизмов в ризоплане.

В зоне молодых корней размножаются преимущественно неспоровые бактерии и микроскопические грибы, тогда как бациллы распространены слабо, так как эти бактерии плохо потребляют простые органические соединения, которые выделяются в таких зонах корня.

Микрофлора ризосферы изменяется в зависимости от вида и стадии развития растений. Показано, что среди культурабельных бактерий ризосферы сахарной свеклы около 9% составляли представители рода Мicrobacterium. В ризосфере кукурузы доминировали бактерии родов Рseudomonas и Еnterobacter. Среди микроорганизмов, которые способны растворять минеральные фосфаты, наиболее широко были представлены роды Penicillium и Streptomyces. В неризосферной почве доминировали бактерии рода Bacillus.

Однако, было показано, что бактериальное разнообразие, как правило, ниже в ризосфере, чем в общем объеме почвы. Методами молекулярной биологии при анализе увлажненных образцов грунта было установлено, что в слое почвы, который не содержит кислорода, доминирующими видами бактерий были представители родов Bacillus и Сlostridium, тогда как в слое почвы, насыщенной кислородом, доминировали представители протеобактерий.

Основным геохимическим циклом почвы является обращение углерода, составляющими которого являются синтез фототрофных организмов органического вещества из углекислого газа и ее трансформация в простых соединений. Под влиянием внесения растительных остатков в почве наблюдается вспышка количества различных групп микроорганизмов и повышения их биохимической активности. Наиболее распространенной углеродсодержаще соединение в природе является .

Ее содержание в сухой массе растений составляет от 40 до 70%. В естественных условиях трансформация целлюлозы осуществляется при участии групп микроорганизмов. Значительная роль в этом процессе принадлежит грибам, в том числе сапротрофным представителям родов Тrichderma, Сhaetomium, Dicoccum, Stachybotrys, Реnicillium и Аspergillus, а также незаконченным грибам Alternaria и Fumago.

В одной молекуле целлюлозы содержится до 14 тыс. молекул В-D-глюкозы. Кроме того, в ходе деструкции целлюлозных остатков в почве образуются разнообразные соединения: органические кислоты, альдегиды, аминокислоты, спирты и другие биологически активные вещества. Вещества, образующиеся при разложения растительных материалов, потребляемых другими представителями биоценоза почвы.

После внесения растительных материалов в почву содержание в нем целлюлозоразрушители микроорганизмов рос от нескольких десятков тысяч до десятков миллионов на 1г сырого вещества.

Микроорганизмы почвы способны выделять вещества, стимулирующие рост и развитие фитобионтов. Синтез ними в корневой зоне витаминов (тиамина, витамина В 12 , пиридоксина, риоофлавину, пантотеновой кислоты и др.), а также фитогормонов (гиббереллины, гетероауксина и других) положительно влияет на развитие растений.

Кроме того, микроорганизмы могут быть источником накопления в почве токсичных веществ. Ведущая роль в этом принадлежит представителям родов Bacillus и Рseudomonas. Наиболее заметное фитотоксичное влияние вызывали B.amilosina, В. brevis i Рseudomonas fluorescens и некоторые другие. Главным фактором, определяющим возможность синтеза фитотоксичных веществ, является внесение в почву растительных остатков или некоторых углеводов.

Было показано, что почву можно искусственно обогатить микроорганизмами-антагонистами путем внесения перегноя.

При этом в почве повышается количество микроорганизмов-антагонистов, относящихся к бактериям, актиномицетов, микроскопических грибов рода Тrichoderma, в то же время численность фитопатогенных грибов рода Неlminthosporium заметно снижается. В случае сева пшеницы после Кукурузы в ее корневой зоне повышается количество микромицетов родов Penicillium и Aspergillus. Таким образом, состав микробного ценоза почвы, содержание в нем как полезной, так и фитопатогенной и фитотоксичного для культурных растений микрофлоры зависит от ряда факторов: вида выращиваемой культурного растения, характера обработки, физико-химических его свойств.

Одним из определяющих факторов плодородия почвы является содержание гумуса. Он формируется на основе органических веществ, поступающих в почву за счет фотосинтезирующей деятельности растений, водорослей, хемо-и автотрофных микроорганизмов. Согласно существующим данным в среднем 80-90% органического вещества почвы минерализуется и только 10-20% участвует в формировании гумуса. Гумус играет интегральную роль в плодородии почв. Его содержания в почвах зависит от многих факторов, среди которых важная роль принадлежит гранулометрическому составу, гидроморфизму и их карбонатность.

Важная роль в образовании гумуса и его минерализации принадлежит грунтовой микрофлоре.

Интенсивность микробной трансформации органических веществ в почвах повышается в направлении от северных до южных регионов. В почвах южных регионов повышается относительное содержание целлюлозоразрушителей бактерий по сравнению с грибами. Несмотря на снижение содержания микромицетов в почвах южных регионов, их видовое разнообразие растет.

В почвах северных регионов, где медленно происходят процессы минерализации, наиболее широко представлены грибы рода Рenicillium. На юге наблюдается повышение содержания представителей рода Aspergillus. Грибы двух родов составляют более 70% микромицетов ряда типов грунтов. Почвы северных регионов значительно беднее содержанием споровых бактерий и актиномицетов по сравнению с южными. Эти микроорганизмы размножаются на поздних стадиях разложения растительных остатков. В почвах, где происходят интенсивные процессы минерализации, широко распространены споровые бактерии, способные усваивать как органический, так и минеральный азот. Напротив, в грунтах, где процессы минерализации органических соединений протекают медленно, превалируют спорообразовальные бактерии, потребляющие органические формы азота. Исследуя молекулярно-биологическими методами структуру бактериальной сообщества ряд образцов почвы, было установлено, что подобные типы грунтов характеризуются подобной структурой доминантных видов бактерий.

Следует отметить, что, несмотря на значительное внимание исследователей к многообразию и функционирования биоценозов почвы, в литературе недостаточно освещены вопросы о закономерностях изменений их состава в зависимости от условий окружающей среды. Однако известно, что за действия на микробный ценоз стрессового фактора, который вызывает влияние на отдельные эколого-трофичные группы микроорганизмов, наблюдается наиболее заметное развитие определенных групп бактерий и обеднение видового разнообразия группировки. Так, в случае инкубирования почвы в метановоздушной атмосфере повышалась его метаноокислительная активность и количество метанотрофных бактерий, тогда как уровень микробной разнообразия заметно снижался.

Количественный состав микрофлоры почвы не всегда является показателем ее плодородия. При определенных условиях в результате интенсивного развития микроорганизмов минеральные формы основных биогенных элементов почвы могут потребляться микробными клетками и переходить в их состав. Подобный процесс происходит в почве после внесения значительного количества соломы. При этом: наблюдается интенсивное развитие целлюлозоразрушительных микроорганизмов и представителей других эколого-трофических груп, что сопровождается снижением содержания в почве минеральных форм азота и его накоплением в микробных клетках (иммобилизация). В этих условиях микроорганизмы могут быть конкурентами растений в процессе потребления азота. Однако, это явление носит временный характер .

Почвенные микроорганизмы

совокупность разных групп микроорганизмов, для которых естественной средой обитания служит Почва . П. м. играют важную роль в круговороте веществ (См. Круговорот веществ) в природе, почвообразовании и формировании плодородия почв. П. м. могут развиваться не только непосредственно в почве, но и в разлагающихся растительных остатках. В почве встречаются также некоторые болезнетворные микробы, водные микроорганизмы и др., которые случайно попадают в почву (при разложении трупов, из желудочно-кишечного тракта животных и человека, с поливной водой или др. путями) и, как правило, быстро в ней погибают. Однако некоторые из них сохраняются в почве длительное время (например, сибиреязвенные бациллы, возбудители столбняка) и могут служить источником инфекции для человека, животных, растений.

По общей массе П. м. составляют большую часть микроорганизмов нашей планеты: в 1 г чернозема содержится до 10 млрд. (иногда и более) или до 10 т/га живых микроорганизмов. П. м. представлены как прокариотами (См. Прокариоты) (бактерии, актиномицеты, синезелёные водоросли), так и эукариотами (См. Эукариоты) (грибы, микроскопические водоросли, простейшие). Благодаря использованию современных методов (электронная и капиллярная микроскопия и др.) ежегодно открывают много новых П. м. Очень разнообразны П. м. по свойствам и функциям. Среди них есть гетеротрофы и автотрофы, аэробы и анаэробы; резко различаются П. м. по оптимуму pH, отношению к температуре, осмотическому давлению, используемым источникам органических и неорганических веществ. Многие из них, несмотря на различные, а иногда прямо противоположные потребности, развиваются в одной и той же почве, состоящей из множества резко различающихся микросред. Изменение числа П. м. зависит и от времени года: весной и осенью их больше, зимой и летом меньше. Верхние слои почвы богаче П. м. по сравнению с нижележащими; особое обилие П. м. характерно для прикорневой зоны растений - ризосферы (См. Ризосфера).

Лит.: Виноградский С. Н., Микробиология почвы, М., 1952; Новогрудский Д. М., Почвенная микробиология, А. А., 1956; Красильников Н. А., Микроорганизмы почвы и высшие растения, М., 1958; Мишустин Е. Н., Микроорганизмы и продуктивность земледелия, М., 1972; Dommergues Y., Mangenot F., Ecologie microbienne du sol, P., 1970; Gray T. R. G., Williams S. Т., Soil microorganisms, N. Y., 1971; Hattory Т., Microbial life in the soil, N. Y., 1973.

Д. Г. Звягинцев.


Большая советская энциклопедия. - М.: Советская энциклопедия . 1969-1978 .

Смотреть что такое "Почвенные микроорганизмы" в других словарях:

    почвенные микроорганизмы - Мельчайшие организмы, перерабатывающие остатки растений в почвенный гумус … Словарь по географии

    Важнейшие компоненты почвы микроскопические растения и животные, обитающие в ней в огромном количестве и принимающие участие в ряде основных превращений веществ, которые совершаются в почве. Можно без преувеличения отметить, что большая… … Биологическая энциклопедия

    почвенные организмы - Совокупность живых организмов, населяющих почву и оказывающих на нее прямое или косвенное воздействие, включает микроорганизмы, грибы, беспозвоночные и мелкие позвоночные животные, корни зеленой растительности. Syn.: почвенная биота … Словарь по географии

    Олигонитрофилы - почвенные микроорганизмы, способные развиваться за счет малых количеств связанного азота в окружающей среде или атмосфере. Многие О. обладают способностью фиксировать молекулярный азот … Толковый словарь по почвоведению

    Особое природное образование, обладающее рядом свойств, присущих живой и неживой природе; состоит из генетически связанных горизонтов (образуют почвенный профиль), возникающих в результате преобразования поверхностных слоев литосферы под… … Большая советская энциклопедия

    Препараты (нитрагин культура клубеньковых бактерий, и др.), содержащие полезные для сельскохозяйственных культур почвенные микроорганизмы. Вносят в почву вместе с семенами. * * * БАКТЕРИАЛЬНЫЕ УДОБРЕНИЯ БАКТЕРИАЛЬНЫЕ УДОБРЕНИЯ, препарты… … Энциклопедический словарь

    Показатели, отражающие вероятность миграции загрязняющих веществ из почвы в атмосферный воздух (миграционно воздушный П.в.), в воду (миграционно водный П.в.), растения (транслокационный П.в.), а также степень воздействия на почвенные… … Экологический словарь

    Биолины, выделяемые высшими растениями и стимулирующе действующие на почвенные микроорганизмы (например, корневые выделения тысячелистника обыкновенного, стимулирующего развитие в его сфере азотфиксаторов). Экологический энциклопедический словарь … Экологический словарь

    ФЕНОКСАПРОП-П-ЭТИЛ - (оптион cynеp, пума супер, супер вип, фуроресупер, эксцел супер) Феноксапроп П кислоты этиловый эфир, (R) изомер феноксапроп этила (рацемата); содержит 50% этого биологически активного оптического изомера (Hoechst) Давление пара 5,3ּ10 7… … Пестициды и регуляторы роста растений

    Ая, ое. 1. прил. к почва (в 1 знач.). Почвенное плодородие. Почвенные зоны. Почвенные отложения. || Обитающий в почве. Почвенные микроорганизмы. Почвенные водоросли. 2. Относящийся к изучению, к исследованию почвы. Почвенная карта. Почвенная… … Малый академический словарь

Почвы, которые сегодня присутствуют на Земле, были образованы в результате жизнедеятельности бактерий. Перерабатывая минеральные частицы горных пород и смешивая их с продуктами переработки отмерших органических соединений и результатом собственной жизнедеятельности, микроорганизмы постепенно превратили безжизненные скалистые долины нашей планеты в плодородные земли. Живые микроорганизмы и бактерии - важнейший элемент цепи естественного круговорота в природе. Считается, что именно они являются двигателем этого процесса.

В природе их очень много: всего в одном грамме лесного грунта содержатся десятки и даже сотни миллионов почвенных бактерий разных видов и подвидов.

Естественный круговорот

В процессе роста растения воспроизводят сложнейшие органические вещества из простых веществ: воды, минеральных солей и углекислого газа. Микроорганизмы, живущие в почве, в результате своей жизнедеятельности перерабатывают отмершие части растений и погибшие организмы в перегной, разлагая тем самым сложные вещества на простые. Эти компоненты растения могут снова использовать для своего развития и роста.

Распространение почвенных микроорганизмов

Бактерий вокруг нас великое множество и распространены они почти везде. Их нет разве что в кратерах действующих вулканов и на небольших участках испытательных полигонов, где проводятся взрывы атомного оружия. Никакие другие жесткие условия окружающей среды не мешают существованию бактерий. Они спокойно переносят ледники Антарктики и живут в воде обжигающих кипящих источников, спокойно приспосабливаются к раскаленным пескам жарких пустынь и живут на скалистых склонах горных вершин. Их настолько много, что вполне возможно, что некоторые названия почвенных бактерий мы еще даже не знаем. На Земле все живые существа постоянно взаимодействуют с микрофлорой, часто выполняя при этом роль ее хранителя и распространителя.

Микрофлора почвы очень богата и разнообразна. Всего в одном кубическом сантиметре может встречаться до миллиарда бактерий. Однако популяция почвенных микроорганизмов может изменяться. Это зависит от типа и состава почвы, ее состояния, а также глубины изучаемого слоя.

Как питаются бактерии

Почвенные микроорганизмы могут получать энергию несколькими способами. Некоторые из бактерий этой группы являются автотрофными, то есть могут самостоятельно вырабатывать собственные вещества для питания, а какие-то из них в качестве питания используют в пищу органические соединения. Именно последняя группа, представляющая гетеротрофные бактерии, и заслуживает отдельного внимания. Среди гетеротрофных представителей царства микроорганизмов, выделяют три основные группы бактерий:

У каждой из этих категорий не только различный способ питания, но и образ жизни совершенно разный. Какие-то виды могут существовать только в воздушной или кисломолочной среде, каким-то микроорганизмам для полноценного существования нужен процесс гниения и разложения, а какие-то представители могут прекрасно чувствовать себя в безвоздушном пространстве. Такие бактерии могут встречаться абсолютно везде на нашей планете.

Почвенные бактерии

Среда обитания таких бактерий - почва. Они представляют собой мельчайшие одноклеточные микроорганизмы. Обитают эти существа в тончайших водных пленках в почве вокруг корневых систем различных растений. Благодаря своим небольшим размерам, они могут расти, развиваться и адаптироваться к быстро изменяющимся условиям окружающей среды гораздо быстрее, чем другие более крупные и сложные микроорганизмы. Особенности их формы позволяют этим бактериям прекрасно приспосабливаться к среде обитания, поэтому их строение за всю историю эволюции осталось в неизменном виде. Обычно такие микроорганизмы имеют форму шара, палочки или имеют изогнутую геометрию.

В своем большинстве бактерии почвенные являются хемосинтетиками, т. е. питаются продуктами, полученными в результате окислительно-восстановительных реакций при участии углекислого газа. В процессе своей жизнедеятельности они производят вещества, необходимые для роста и развития других микроорганизмов.

Семейство почвенных микроорганизмов достаточно разнообразно. Здесь присутствуют такие бактерии, как:


Азотофиксаторы

Уникальной способностью этой группы почвенных бактерий является умение усваивать молекулы азота из воздуха, что невозможно для растений. Однако в результате синтеза, произведенного азотофиксаторами, азот может усваиваться растениями. По образу существования эти бактерии делятся на свободноживущих и симбионтов, то есть тех, которым необходимо взаимодействовать с другими микроорганизмами.

Клубеньковые азотфиксаторы - симбионты, имеющие продолговатую овальную или палочкообразную форму. Обычно они вступают во взаимодействие с бобовыми культурами, такими как горох, чечевица, люцерна и т. д.

Поселившись в корневой системе, они образуют шарообразные узелки, которые видны даже невооруженным глазом, и живут внутри них. Симбиоз бактерий и растения приносит обоюдную выгоду. Данный вид микроорганизмов поставляет в корневища азот, в то время как питание почвенных бактерий происходит за счет переработки продуктов, получаемых непосредственно из растения и его отмерших частиц. Для многих растений клубеньковые уплотнения - единственный источник азотсодержащих соединений. Однако в средах с повышенным содержанием азота клубеньковые микроорганизмы прекращают вступать во взаимодействие с некоторыми растениями. Они очень избирательны и активируются только в определенных видах и сортах.

Сегодня принято делить фиксирующие азотные соединения организмы на две группы. Первая группа - это микробы, способные вступить в симбиоз с растениями. К их числу относят такие виды, как Rhizobium, Bradyrhizobium, Mezorhizobium, Sinorhizobium и Azorhizobium, которые могут жить и свободно, не вступая во взаимосвязь. Вторая группа почвенных ассоциативных азотфиксаторов - это более приспособленные к свободному существованию в почве. В качестве примера почвенных бактерий можно назвать Azospirillum, Pseudomonas, Agrobacterium, Klebsiella, Bacillus, Enterobacter, Flavobacterium Arthrobacter, Clostridium, Azotobacter, Beijerinckia и другие роды.

Бактерии гниения

Сапрофиты (бактерии гниения) обычно живут на поверхности грунта. Они обитают в верхних слоях почвы, на отмерших частях корневых систем растений, на поверхности погибших личинок. В качестве источника своей жизнедеятельности используют органическую мертвую ткань: в огромных количествах обнаруживаются на останках животных, упавших листьях и плодах растений. Результатом их жизнедеятельности является быстрое разложение и утилизация мертвых тканей. Они в значительной степени улучшают состав почвы, наполняя ее питательными веществами.

К семейству сапрофитов относится большая часть представителей почвенных бактерий. Существует два вида подобных микроорганизмов. Одни из них живут в бескислородных средах, а другим для полноценной жизнедеятельности обязательно нужен воздух. Это свободноживущие организмы, которые никогда не вступают в симбиоз.

К питательным органическим соединениям сапрофиты достаточно требовательны. Любой перерабатываемый ими продукт должен содержать определенные компоненты, что влияет на процесс их роста, развития и жизнедеятельности. Обязательные питательные соединения - это:

  • азотосодержащие соединения или определенный набор аминокислот;
  • витамины, белковые и углеводные соединения;
  • пептиды, нуклеотиды.

Как происходит процесс

Гниение органики происходит благодаря тому, что микроорганизмы, способствующие разложению материи, обладают метаболизмом. В результате этого процесса разрушаются химические связи молекул ткани, содержащей соединения азота. Питание микроорганизмов осуществляется вследствие захвата элементов, содержащих белок и аминокислоты. В результате ферментации продуктов, поступающих в организм бактерии, из белковых соединений высвобождается аммиак и сероводород. Таким образом микроорганизмы получают энергию для своего дальнейшего существования.

В природе бактерии гниения играют первостепенную роль в восстановлении и минерализации почвы. Отсюда и часто встречающееся название бактерий этого типа - редуцент. В процессе своей жизнедеятельности редуценты превращают органические вещества и биомассы в простейшие соединения СО 2 , Н 2 О, NH 3 и другие. Среди гнилостных бактерий широко распространены аммонифицирующие микроорганизмы - неспорообразующие энтеробактерии, бациллы, спорообразующие клостридии.

Бактерии брожения

Способ питания почвенных бактерий брожения заключен в переработке органических сахаров. В естественной природной среде они обычно встречаются на поверхности растений, плодов и ягод, в молочных продуктах и в различных слоях эпителия птиц, животных, рыб и человека. В результате их жизнедеятельности происходит скисание продуктов с образованием молочной кислоты. Благодаря такому свойству их повсеместно используют в приготовлении всевозможных заквасок и кисломолочных продуктов. Молочнокислые бактерии также являются первостепенными участниками при заготовительном силосовании растительных кормов для сельскохозяйственных животных.

Почвенные молочнокислые микроорганизмы преимущественно имеют две формы - могут быть вытянуты в виде палочки или иметь сферическую форму.

Болезнетворные бактерии

Бактерии гниения (сапрофиты) и другие условно патогенные микробы, попавшие в организм человека из окружающей среды, при наличии определенных условий могут вызвать тяжелые заболевания как у людей, так и у животных. Особенно подвержены такому воздействию люди с ослабленным иммунитетом и пациенты, страдающие от авитаминоза, неврозов и постоянного переутомления. Бывают случаи, когда вызванные резидентной микрофлорой заболевания заканчиваются летальным исходом.

Сапрофитные микроорганизмы, попав в организм человека, могут вызвать бактериальный шок, развивающийся вследствие поступления в кровь большого количества условно патогенных микроорганизмов и продуктов их жизнедеятельности. Обычно подобное явление происходит на фоне длительных очаговых инфекций.

Нередко представители резидентной почвенной микрофлоры способствуют возникновению гнойно-воспалительных процессов и абсцессов в организме.

Однако отрицательное воздействие условно патогенные микроорганизмы на организм живых существ могут оказать лишь при появлении благоприятных для их жизнедеятельности факторов. Для улучшения земельных почв, их обогащения и минерализации такая микрофлора необходима. Ведь без нее земли вовсе перестанут быть плодородными, а это, несомненно, станет негативным фактором для естественного круговорота жизни на Земле.

Борьба с вредоносными гостями

Хорошо известно, что сапрофиты, попав в продукты питания, вызывают их порчу. Как правило, такой процесс сопровожден большим выделением ядовитых для человека веществ, сероводорода и аммиака. Субстрат может нагреваться, доходя порой до самовозгорания. Поэтому человек создает условия, в которых микроорганизмы, вызывающие гниение и разложение, теряют способность к размножению или вовсе погибают. К подобным мерам относится пастеризация, стерилизацию, соление, копчение, кипячение, засахаривание или высушивание продуктов.

Функции и значение бактерий

Почвенные микроорганизмы способствуют быстрому разложению неживой органической субстанции, образуя при этом высококачественный гумус в различных слоях грунта, необходимый для нормального развития растений. Некоторые бактерии способны ассимилировать почвенные источники азота, фосфора и железа. Они могут трансформировать или перераспределять метаболиты между частями растения. Эндорфитные микроорганизмы, живущие во внутренних слоях корневой системы растений, оказывают положительное влияние на их рост и развитие. Данная группа бактерий не только борется с патогенными микроорганизмами, но даже способна продуцировать для растения витамины и гормоны. Поэтому важность почвенной микрофлоры сложно переоценить.

просмотров