Ядерные энергетические установки. Принцип действия атомных энергетических установок. Основные ограничения, принятые в расчетах

Ядерные энергетические установки. Принцип действия атомных энергетических установок. Основные ограничения, принятые в расчетах

Космический двигатель «Росатома» позволит долететь до Марса за месяц

«Росатом» и «Роскосмос» совместно разрабатывают ядерный двигатель, который позволит долететь до Марса за месяц, заявил генеральный директор «Росатома» Сергей Кириенко, выступая в Совете Федерации.

По его словам, новый двигатель позволит не только долететь до Марса за месяц-полтора, но и вернуться назад, так как он будет сохранять возможность и ускорения, и маневрирования кораблем.

«Сегодняшние космические установки позволяют долететь до Марса за полтора года без возможности вернуться обратно и без возможности маневрирования», — уточнил Кириенко.

Источник: regnum.ru

Оригинал взят у marafonec в Ядерная энергетическая установка для ракет и подводных аппаратов - как это работает

Вчера, без всякого преувеличения, мы стали свидетелями эпохального события, открывающего новые, совершенно фантастические перспективы для военной техники и (в перспективе) - энергетики и транспорта вообще.

Но для начала хотелось бы понять, как работает ядерная энергетическая установка для ракет и подводных аппаратов, о которой говорил Путин. Что именно в ней является движителем? Откуда берётся тяга? Не за счёт же вылетающих из сопла нейтронов...


Когда узнал со слов коллеги о том, что у нас созданы ракеты с практически неограниченной дальностью полёта, обалдел. Показалось, он что-то упустил, а слово "неограниченной" было упомянуто в каком-то узком смысле.

Но информация, полученная затем из первоисточника, сомнений не вызывала. Звучала, напомню, она так:

«Одно из них - создание малогабаритной сверхмощной ядерной энергетической установки, которая размещается в корпусе крылатой ракеты типа нашей новейшей ракеты Х-101 воздушного базирования или американского «Томагавка», но при этом обеспечивает в десятки раз - в десятки раз! - большую дальность полёта, которая является практически неограниченной.»

В услышанное невозможно было поверить, но не верить было нельзя - это сказал ОН. Включил мозг и тут же получил ответ. Да какой!
Ну, черти! Ну, гении! Нормальному человеку такое даже в голову не придёт!

Итак, до сих пор мы знали только о ядерных силовых установках для космических ракет. В космических ракетах обязательно есть вещество, которое, будучи разогретым или разогнанным ускорителем, питаемым ядерной силовой установкой, с силой выбрасывается из сопла ракеты и обеспечивает ей тягу.

Вещество при этом расходуется и время работы двигателя ограничено.

Такие ракеты уже были и ещё будут. А вот за счёт чего движется ракета нового типа, если её дальность является "практически неограниченной"?

Ядерная энергетическая установка для ракет

Чисто теоретически, кроме тяги на веществе, имеющемся в запасе на ракете, движение ракеты возможно за счёт тяги электрических двигателей с "пропеллерами" (винтовой двигатель). Электричество при этом производит генератор, питающийся от ядерной силовой установки.

Но такую массу без большого крыла на винтовой тяге, да ещё с винтами небольшого диаметра, в воздухе не удержать - слишком мала такая тяга. А это таки ракета, а не беспилотник.

Итого, остаётся самый неожиданный и, как оказалось, самый эффективный способ обеспечения ракеты веществом для тяги - взятие его из окружающего пространства.

Т.е., как бы это удивительно ни звучало, но новая ракета работает "на воздухе"!

В том смысле, что из её сопла вырывается именно разогретый воздух и более ничего! А воздух не закончится, пока ракета находится в атмосфере. Именно поэтому эта ракета - крылатая, т.е. её полёт проходит целиком в атмосфере.

Классические технологии ракет большой дальности старались сделать полёт ракеты выше, чтобы уменьшить трение о воздух и тем самым увеличить их дальность. Мы как всегда сломали шаблон и сделали ракету не просто большой, а неограниченной дальности именно в воздушной среде.

Неограниченная дальность полёта даёт возможность таким ракетам работать в режиме ожидания. Запущенная ракета прибывает в район патрулирования и нарезает там круги, ожидая доразведки данных о цели или прибытия цели в данный район. После чего неожиданно для цели немедленно её атакует.

Ядерная энергетическая установка для подводных аппаратов

Думаю, аналогично устроена и ядерная энергетическая установка для подводных аппаратов о которых говорил Путин. С той поправкой, что вместо воздуха используется вода.

Дополнительно об этом говорит то, что эти подводные аппараты обладают низкой шумностью. Известная торпеда "Шквал", разработанная ещё в советское время, имела скорость порядка 300 км/час, но была очень шумной. По сути это была ракета, летящая в воздушном пузыре.

За малошумностью же стоит новый принцип движения. И он - тот же самый, что и в ракете, потому что универсален. Была бы только окружающая среда минимально необходимой плотности.

Этому аппарату неплохо подошло бы название "Кальмар", потому что по сути это водомётный двигатель в "ядерном исполнении" :)

Что касается скорости, она кратно превосходит скорость самых быстрых надводных кораблей. Самые быстрые корабли (именно корабли, а не катера) имеют скорость до 100-120 км/час. Следовательно, с минимальным коэффициентом 2 получаем скорость 200-250 км/час. Под водой. И не очень шумно. И с дальностью в многие тысячи километров... Страшный сон наших недругов.

Относительно ограниченная по сравнению с ракетой дальность - временное явление и объясняется тем, что морская вода высокой температуры - очень агрессивная среда и материалы камеры, условно говоря, сгорания, имеют ограниченный ресурс. Со временем же дальность этих аппаратов может быть увеличена в разы только за счёт создания новых, более устойчивых материалов.

Ядерная энергетическая установка

Несколько слов о самой ядерной энергетической установке.

1. Поражает воображение фраза Путина:
«При объёме в сто раз меньше, чем у установок современных атомных подводных лодок, имеет большую мощность и в 200 раз меньшее время выхода на боевой режим, то есть на максимальную мощность.»

Опять одни вопросы.
Как они этого добились? Какие конструкторские решения и технологии применены?

Мысли такие.

1. Радикальное, на два порядка, увеличение отдачи мощности на единицу массы возможно только при условии приближения режима работы ядерного реактора к взрывному. При этом реактор надёжно управляется.
2. Поскольку околовзрывной режим работы обеспечивается надёжно, скорее всего, это реактор на быстрых нейтронах. На мой взгляд, только на них возможно безопасное использование столь критического режима работы. Кстати, для них топлива на Земле - на столетия.
3. Если же со временем мы узнаем, что это таки реактор на медленных нейтронах, я тем более снимаю шляпу перед нашими ядерщиками, потому что без официального заявления в это совершенно невозможно поверить.
В любом случае, смелость и изобретательность наших ядерщиков поразительна и достойна самых громких слов восхищения! Особенно приятно, что наши ребята умеют работать в тиши. А потом как грохнут новостью по голове - хоть стой, хоть падай! :)

Как это работает

Примерная, смысловая, схема работы двигателя ракеты на основе ядерной силовой установки выглядит так.

1. Открывается, условно говоря, впускной клапан. Набегающий воздушный поток попадает через него в камеру нагрева, которая постоянно разогрета от работы реактора.
2. Впускной клапан закрывается.
3. Воздух в камере нагревается.
4. Открывается выпускной клапан и воздух с большой скоростью вырывается из сопла ракеты.
5. Выпускной клапан закрывается.

Цикл повторяется с высокой частотой. Отсюда эффект непрерывной работы.

P.S. Описанный выше механизм, повторю, - смысловой. Он дан по просьбе читателей для лучшего понимания того, как этот двигатель может вообще работать. В реальности, не исключено, реализован прямоточный двигатель. Главное в данной статье - не определение типа двигателя, а выявление вещества (набегающего воздуха), которое используется в качестве единственного рабочего тела, дающего тягу ракете.

Безопасность

Использование открытия российских учёных в гражданском секторе тесно связано с безопасностью ядерной силовой установки. Не в смысле её возможного взрыва - думаю, этот вопрос решён, - а в смысле безопасности его выхлопа.

Защита малогабаритного ядерного двигателя явно меньше, чем у большого по размерам, поэтому нейтроны наверняка будут проникать в "камеру сгорания", а точнее, камеру разогрева воздуха, тем самым с некоторой вероятностью делая радиоактивным всё, что таковым можно в воздухе сделать.

Азот и кислород имеют радиоактивные изотопы с малым временем полураспада и не опасны. Радиоактивный углерод вещь долгоживущая. Но есть и хорошие новости.

Радиоактивный углерод образуется в верхних слоях атмосферы под действием космических лучей и так, так что свалить все на ядерные двигатели не получится. Но главное, концентрация углекислого газа в сухом воздухе составляет всего 0,02÷0,04%.

Учитывая же, что процент углерода, становящийся радиоактивным, величина ещё на несколько порядков меньшая, предварительно можно считать, что выхлоп ядерных двигателей не более опасен, чем выхлоп ТЭЦ, работающей на угле.

Более точная информация появится, когда дело подойдёт к гражданскому применению этих двигателей.

Перспективы

Честно говоря, от перспектив захватывает дух. Причём я уже говорю не о военных технологиях, здесь всё ясно, а о применении новых технологий в гражданском секторе.

Где могут быть применены ядерные силовые установки? Пока навскидку, чисто теоретически, в перспективе 20-30-50 лет.

1. Флот, в том числе гражданский, транспортный. Многое придётся переводить на подводные крылья. Зато скорость можно легко увеличить вдвое/втрое, а стоимость эксплуатации с годами будет только падать.
2. Авиация, прежде всего транспортная. Хотя, если безопасность с точки зрения опасности облучения окажется минимальной, возможно применение и для гражданских перевозок.
3. Авиация с вертикальным взлётом и посадкой. С использованием резервуаров со сжатым воздухом, пополняемых во время полёта. Иначе, на малых скоростях, необходимую тягу не обеспечить.
4. Локомотивы скоростных электропоездов. С использованием промежуточного электрогенератора.
5. Грузовые автомобили на электротяге. Тоже, разумеется, с использованием промежуточного электрогенератора. Это, думаю, будет в отдалённой перспективе, когда силовые установки удастся уменьшить ещё в несколько раз. Но исключать такой возможности я бы не стал.

Это уже не говоря о наземном/мобильном использовании ядерных электроустановок. Одна беда - для работы таких малогабаритных ядерных реакторов требуются не уран/плутоний, а гораздо более дорогие радиоактивные элементы, наработка которых в ядерных же реакторах пока очень и очень дорога и требует времени. Но и эта задача может быть со временем решена.

Друзья, обозначена новая эра в сфере энергетики и транспорта. Судя по всему, Россия станет лидером этих направлений на ближайшие десятилетия.

Примите мои поздравления.
Скучно не будет!

Константин Иванков


СПОСОБ ЗАПУСКА ЯДЕРНЫХ РАКЕТНЫХ ДВИГАТЕЛЕЙ, ОСНОВАННЫХ НА РЕАКЦИЯХ РЕЗОНАНСНО-ДИНАМИЧЕСКОГО ДЕЛЕНИЯ И СИНТЕЗА
(57) Реферат:

Сущность изобретения: способ запуска ядерных ракетных двигателей, основанных на реакциях резонансно-динамического деления и синтеза, заключается в том, что в активную зону - магнитную ловушку реактора - вводят до достижения заданной плотности газ исходных ядер синтеза и пар или газ из делящегося вещества. Затем на время инициирования реакций деления и синтеза в активную зону реактора вводят высокоэнергетические протоны, которые, вращаясь внутри реактора, генерируют нейтроны из ядер делящегося вещества. За счет соответствующего выбора энергии - релятивистской массы протонов - возбуждают электромагнитные и магнитоакустические волны, частота которых совпадает с частотой вращения исходных ядер синтеза, находящихся в приосевой области, и тем самым нагревают их до термоядерных температур. Кроме этого, высокоэнергетические протоны ионизируют ядра деления и синтеза, в результате чего они под действием скрещенных электрического и магнитного полей магнитной ловушки начинают вращаться вокруг продольной оси реактора с дрейфовой скоростью, обеспечивающей резонансное деление ядер делящегося вещества при их соударении с тепловыми нейтронами, вошедшими в активную зону реактора из замедлителя, в котором они были получены из быстрых нейтронов при их замедлении. После поджига совместных реакций деления и синтеза подача высокоэнергетических протонов прекращается. Однако она может быть продолжена при необходимости дополнительного снижения критической плотности делящегося вещества или получения дополнительной ядерной энергии. Технический результат заключается в обеспечении возможности совместного протекания реакций резонансно-динамического деления и термоядерного синтеза за счет использования высокоэнергетических протонов, ускоренных до энергии сотни МЭВ. 2 табл., 1 ил.

Но я лично думаю, что все проще: крылатая ракета стартует обычным образом, выходит на высоту и скорость, а далее работает прямоточный реактивный двигатель рельсотронной архитектуры, где импульсы разрядные питаются от небольшого реактора и порождают в воздухе поток плазмы - ионизированного воздуха. Это позволяет поддерживать режим полета на заданной скорости (рельсотронные ускорители позволяют создавать достаточно быстрый реактивный поток). Для аппарата основная задача: лететь на нужной скорости как можно дольше, поток пазмы - не радиоактивен, а в момент взрыва ракеты ядерная установка разрушается, добавляя радиоактивности в эпицентре. Вот такая схема, судя по всему, и реализуется в данном типе оружия - так получается крылатая ракета с ядерной энергетической установкой.

Более двадцати пяти лет назад в Семипалатинске был произведен первый энергопуск ядерного реактора ИВГ-1,с помощью которого была начата отработка конструкции ядерного ракетного двигателя. Уже тогда предполагали,что такой двигатель понадобится во время полета человека к Марсу. Позднее трудности с финансированием науки затормозили работу, но планируемая на 2017 г. экспедиция к Марсу оживила интерес к ядерному двигателю. Ядерный двигатель представляет собой реактор, в котором вдоль тепловыделяющих элементов с ядерным топливом проходит поток газа – водорода. Он охлаждает элементы, а сам нагревается и с большой скоростью истекает из сопла, создавая тягу двигателя. При этом возникает импульс, толкающий ракету вперед. Температура газа на выходе должна быть очень высока – не менее 3000 °С, а удельная тяга – 950 с. Только при этих условиях ядерный двигатель эффективнее, чем обычный, работающий на жидком топливе.

Сейчас в области ядерных ракетных двигателей мы, несмотря на полузамороженное состояние работ, на 15-20 лет опережаем США. Работы над ядерными энергетическими (ЯЭУ) и энергодвигательными установками (ЯЭДУ) в настоящее время ориентированы на формирование опережающего научно-технического задела по созданию базовых унифицированных элементов, узлов и агрегатов ЯЭУ (ЯЭДУ).

К приоритетным направлениям исследований, которые могут показать преимущества ядерных источников энергоснабжения перед другими их вариантами, можно отнести:

    развитие технологий, обеспечивающих создание ЯЭУ мощностью от десятков до сотен киловатт (с перспективой ее дальнейшего увеличения);

    доведение гарантированного ресурса ЯЭУ до уровня, не меньше ожидаемого от солнечной энергетики (в том числе до 10 лет и более на ГСО);

    развитие технологий, обеспечивающих создание бимодальных ядерных электродвигательных установок (работающих как в режиме ядерных ракетных двигателей на водороде, так и в электро-генерирующем режиме для питания целевой и служебной аппаратуры КА или ЭРД);

    подтверждение ядерной и радиационной безопасности разработки и эксплуатации ЯЭУ (ЯЭДУ).

Как показали исследования,проведенные специализированными отечественными организациями, при мощностях 50…100 кВт предпочтение может быть отдано ядерным энергетическим установкам в силу их заметных преимуществ перед традиционными солнечными энергоустановками по массогабаритным, эксплуатационным и экономическим показателям. Причем в указанном диапазоне мощностей существенные преимущества имеют термоэмиссионные ЯЭУ второго поколения, основанные на дальнейшем развитии технологии, созданной по программе “Топаз”, важным элементом которой явились успешные летно-конструкторские испытания в 1987-1988 гг. первой в мире термоэмиссионной ЯЭУ “Топаз-1”. Именно это обстоятельство – использование ядерной энергоустановки – привносит весьма существенную специфику в практику конструирования КА, поскольку компоновочная схема последнего в большей степени становится зависимой от особенностей энергоустановки, чем от характеристик и параметров целевой аппаратуры.

Существенно, что ЯЭУ используется как в качестве источника электроснабжения бортовой аппаратуры,так и совместно с электро-ракетными двигателями для выведения КА с радиационно безопасной орбиты на рабочую. Выполненные исследования по определению областей применения различных видов энергии для обеспечения КА свидетельствуют о том, что уже с уровня 300 кВт при сроке службы КА более одного года использование ядерной энергетики представляется более предпочтительным. Результаты теоретических исследований показывают, что может быть создана ЯЭУ с термоэмиссионным преобразованием энергии мощностью 7,5 МВт и удельными массовыми характеристиками 6 кг/кВт.

ЯЭУ с турбомашинным преобразованием энергии (ТЭМП) может иметь преимущества по сравнению с термоэмиссионным и термоэлектрическим вариантами вследствие:

    значительно меньшей массы реакторной установки при равной электрической мощности; более высокого КПД;

    большей технологичности из-за значительно более низкой температуры рабочего тела;

    принципиальной возможности отработки энергетического контура отдельно от реактора;

    более высокой надежности ТЭМП из-за отсутствия ограничений по дублированию элементов вне реактора.

Поэтому представляется целесообразным рассмотреть концепцию ЯЭУ с ТЭМП. Следует также отметить большой накопленный опыт по разработке ЯРД, наличие стендовой базы и высококвалифицированных специалистов в России, а также большой научно-технический задел, созданный в США по программе “Нерва”. При выбранном уровне электрической мощности (2 МВт) конструкция реактора и радиационной защиты близка к оптимальной по удельным массам, по конфигурации и по загрузке топлива, а удельные массы агрегатов ТЭМП при этом уменьшаются до уровня 2-4 кг/кВт.

Проведенный проектно-баллистический анализ космического энерготранспортного аппарата (КЭТА) определил требуемые параметры электрической мощности, а также характеристики электроракетной двигательной установки.

Основные ограничения, принятые в расчетах:

    масса установки и габариты не должны выходить за рамки возможностей ракеты-носителя “Ангара”;

    радиационная доза, накапливаемая полезным грузом при пересечении радиационных поясов Земли, не должна превышать 5 х 104 рад;

    радиационно безопасной считается круговая орбита высотой 600-800 км;

    ресурс бортовых систем КЭТА должен составлять 1-2 года на первом этапе с доведением до 5-7 лет при последующей отработке;

    число рейсов КЭТА за ресурс – до 10;

    суммарная доза радиоактивного облучения,получаемая в приборном отсеке от работы реактора и воздействия радиационных поясов Земли: гамма-излучение – не более 106 рад; флюенс быстрых нейтронов – не более 1013 н/см 2 .

В РНЦ “Курчатовский институт” разработан проект ЯЭУ с турбомашинным преобразователем энергии, рассчитанной на следующие параметры:

    тепловая мощность – до 10 МВт;

    электрическая мощность – около 2 МВт;

    система преобразования энергии – турбомашинная (цикл Брайтона);

    суммарное время работы – не менее 104 ч;

    число включений за ресурс – до 30;

    максимальная температура рабочего тела – до 1500 К.

В результате проведенных проработок определились основные проектные характеристики ЯЭУ:

    масса газоохлаждаемого реактора – 1000 кг;

    топливо – UC (U,Zr)C,UNc 90 %-м обогащением по U235, оболочка топлива – Zr, W184, отражатель – Be;

    масса радиационной защиты (LiH,W,B4C) – 1000 кг;

    масса преобразователя энергии (турбина, компрессор и униполярный генератор) – 3500 кг;

    рабочее тело – гелий-ксеноновая смесь (1-3 % Хе);

    холодильники-излучатели – на тепловых трубах при средней температуре около 700 К, масса 3000 кг;

    площадь холодильника-излучателя (эффективная) – около 300 м 2 ;

    масса системы автоматического управления, системы электро-снабжения – 1000 кг;

    масса конструкции ЯЭУ – 1500 кг;

    суммарная масса ЯЭУ – 11 000 кг;

    удельная масса – 5,5 кг/кВт.

Конструктивно КЭТА, в состав которого входит ЯЭУ, состоит из модуля энергоустановки с ядерным реактором и защитой; ТЭМП, размещенного в конусе радиационной защиты; холодильника-излучателя на тепловых трубах, выполненного по несущей схеме; четырех раскрывающихся плоскостей холодильников-излучателей, имеющих полуцилиндрическую форму, а также размещенной внутри холодильника-излучателя выдвижной фермы.

На выдвижной ферме располагаются:

    приборный отсек с системой стыковки, приборами ориентации, навигации,связи и дополнительной двигательной установкой;

    маршевая электроракетная двигательная установка (удельный импульс 4600 с); топливный бак ксенона.

Основные массовые характеристики КЭТА: ЯЭУ – 11 000 кг; ЭРДУ – 5000 кг; выдвижная ферма,топливный бак – 1000 кг; приборный отсек,система стыковки – 2000 кг; дополнительная двигательная установка, неучтенные элементы – 1000 кг; топливо (ксенон) – 8000 кг; суммарная “сухая” масса КЭТА – 20 000 кг. КЭТА может обеспечить проведение обширных исследований космоса, создание лунной базы и решение ряда других народнохо-зяйственных и оборонных задач.

В XXI в. придется решать и более энергоемкие задачи: создание космических производственных комплексов, исследование комет, астероидов и др. Для их решения необходимы более мощные ДУ. Требования, предъявляемые к мощности двигательной установки, определяются временем полета, массой полезной нагрузки, удельной массой энергоустановки (кг/кВт), удельным импульсом и КПД двигателя. Мощности, необходимые для грузового полета на Луну, 600-дневного грузового полета на Марс с полезной нагрузкой в сотни тонн,оцениваются в 1-10 МВт. Для пилотируемого полета на Марс требуются источники питания мощностью в несколько десятков МВт. Это позволяет с учетом отечественного и зарубежного опыта рассмотреть концепцию создания КЭТА с ЯЭРДУ на базе энергетической установки с электрической мощностью в несколько МВт.

Ядерная энергетическая установка электрической мощностью 2 МВт для космического энерготранспортного аппарата. Космические энерготранспортные аппараты с ядерной энергетической установкой мощностью около 2 МВт и электроракетными двигателями могут обеспечить значительный прогресс в исследовании планет Солнечной системы, создании лунной базы, проведении некоторых чисто научных высокоэнергетических экспериментов в космосе и, наконец, с их использованием может быть уменьшена в несколько раз себестоимость доставки 1 кг полезного груза на геостационарную и другие высокие орбиты.

КЭТА представляет собой космический челнок (межорбитальный буксир). Запуск КЭТА на низкую орбиту осуществляет РН “Ангара”. Совершенно очевидно, что программы исследования дальних планет, создания лунной базы, пилотируемой экспедиции к Марсу и, наконец, проекты глобальной космической телефонизации требуют решительного интенсивного увеличения транспортных возможностей космической техники, что предопределяет резкий рост энерговооруженности КА.

Ядерные электроракетные двигательные установки с электрической мощностью 2-10 МВт. Из предварительного проектно-баллистического анализа следует, что для ЯЭУ наиболее целесообразным представляется уровень электрической мощности ~3 МВт как наиболее оптимальный в соответствии со следующими критериями:

    максимально возможная масса полезного груза, выводимого на геостационарную орбиту с помощью ЯЭРДУ, размещается при выведении с Земли на РН “Энергия” в контейнере ПГ;

    время транспортировки груза на ГСО не превышает 100 сут (условие непревышения допустимой радиационной дозы при прохождении радиационных поясов Земли);

    удельный импульс электроракетного двигателя (ЭРД) составляет 5000 с;

    выбранный уровень мощности является универсальным для решения ряда других задач (транспортировка грузов к Марсу, Луне, Венере, изменение наклонения орбит больших космических объектов типа научных станций, проведение научных экспериментов и организация промышленного производства на орбите).

Среди мощных ЭРД наиболее проработанными как по полетным параметрам, так и по разработке подсистем являются магнитоплазменные и ионные электроракетные двигатели. В настоящее время исследованы возможности создания магнитоплазмодинамического (МПД) двигателя мощностью 2,5 МВт с внешним полем, работающего при разрядном токе 10 кА и напряжении 250 В. Ресурс двигателя, необходимый для большинства космических экспедиций, принят равным 10 тыс. ч, поэтому разработки направлены в основном на увеличение ресурса отдельного двигателя. Продемонстрирована возможность работы МПД-двигателей с мощностью до 40 МВт в квазистационарном режиме. Течение плазмы удовлетворительно описывается уравнениями идеальной магнитной гидродинамики.

Использование мощных МПД-двигателей в проводимых в последние десятилетия космических экспериментах не рассматривалось из-за низкого уровня бортовой энергетики существующих КА. Функционирование установки при низких уровнях мощности невыгодно по двум причинам. Во-первых, при этом снижается до недопустимо низкого значения эффективность преобразования электрической энергии в тягу. Во-вторых, высокую эффективность при низких уровнях средней мощности можно получить только в импульсном режиме работы двигательной установки. Для обеспечения импульсного режима работы необходим энерго-преобразователь со вспомогательными устройствами, масса которого довольно значительна. Поэтому маломощные двигательные установки с импульсными МПД-двигателями не могут конкурировать с другими ЭРД.

Проведенные баллистические расчеты показал и, что очень перспективно использовать МПД-двигатель в маршевой двигательной установке для межорбитальных полетов, если в составе КА имеется бортовой мегаваттный источник энергии, при котором стационарные МПД-двигатели достигают удовлетворительных двигательных характеристик. Для транспортировки большого источника энергии с низкой орбиты ИСЗ на геостационарную орбиту при помощи двигателя на химическом топливе требуется масса топлива, в 10 раз превышающая массу полезной нагрузки. При использовании МПД-двигателя масса рабочего тела уменьшается в 5-10 раз. Если учесть, что масса МПД-двигателя того же порядка, что и двигателя на химическом топливе,то выигрыш в начальной массе КА на низкой околоземной орбите оказывается значительным. Для выполнения таких задач необходима надежная конструкция установки с МПД-двигателем мощностью несколько мегаватт.

Наиболее оптимальной для КА выбранного уровня мощности является реакторная установка на быстрых нейтронах, концепция активной зоны которой базируется на использовании ураноемких высокотемпературных композиций в виде витых стержневых твэлов или свободной засыпки шариковых твэлов с осевым течением теплоносителя. Выбор реактора на быстрых нейтронах обусловлен: минимальными габаритами и массой; отсутствием замедлителя, что снимает проблему его стойкости и охлаждения; практическим отсутствием эффектов реактивности, связанных с выгоранием и зашлаковыванием; небольшим начальным запасом и отрицательным температурным эффектом реактивности.

Ядерная безопасность на всех этапах жизненного цикла КА при штатных и аварийных ситуациях обеспечивается с помощью активных и пассивных средств, включающих следующие элементы:

    регулирующие барабаны в боковом отражателе;

    выводимые поглощающие стержни;

    резонансные поглотители, размещаемые в активной зоне; программируемое изменение геометрии реактора в аварийных ситуациях.

Радиационная защита полезного груза и системы управления – теневая, в виде усеченного конуса – определяется предельно допустимым уровнем радиации. В качестве основных компонентов защиты рассматриваются гидрид циркония, активированный бором, и гидрид лития. Выбор турбомашинного способа преобразования по термодинамическому циклу Брайтона обусловлен малой удельной массой системы преобразования – менее 10 кг/кВт, что существенно меньше ее значения для других способов преобразования (30 кг/кВт); высокой степенью технологической готовности, отработанностью основных узлов газового контура; возможностью обеспечения соответствия выходных параметров электрогенератора потребностям нагрузки; высоким КПД энергопреобразования (-30 %). Среди динамических способов преобразования энергии цикл Брайтона отличается тем, что обеспечивает простоту запуска, химическую инертность и радиационную неактивируемость рабочего тела.

В предлагаемой энергоустановке применен прямой регенеративный замкнутый цикл Брайтона, основными узлами при реализации которого являются турбокомпрессор-генератор, рекуперативный теплообменник и холодильник-излучатель (ХИ). Максимальная температура цикла составляет 1500 К, что является вполне оправданным при использовании современных конструкционных материалов на основе керамик для изготовления дисков турбин и жаропрочных сплавов для корпусных узлов и подводящих патрубков. Материалы, работающие при таких температурах, имеют, однако, повышенную хрупкость при более низких температурах, что требует отработки алгоритма запуска турбин. Конструкция рекуперативного теплообменника, состоящая из ряда штампованных листов, обеспечивает высокоинтенсивный теплообмен и тем самым позволяет создать компактный и легкий теплообменник.

КА состоит из модуля энергоустановки на основе ядерного реактора, двигательного модуля, ускорите ля и отсека полезного груза. Модуль энергоустановки включает в себя реакторную установку, теневую радиационную защиту, систему энергопреобразования (СЭП), холодильники-излучатели на основе тепловых труб и раздвижную ферму. Двигательный модуль содержит блок маршевых электроракетных двигателей, топливный бак, систему управления двигателями, систему управления космическим аппаратом, а также систему управления ЯЭУ. Холодильники-излучатели электрической ракетной двигательной установки размещены на поверхности двигательного модуля.

Ускоритель представляет собой сбрасываемую ракетную ступень, состоящую из бака окислителя (кислород),бака горючего (керосин) и двух двигателей суммарной тягой около 1 тс, размещенных на сбрасываемой ферме. Ферма закреплена на поверхности силового каркаса СЭП и сбрасывается вместе с баками и двигателями на круговой орбите высотой Нкр ~ 800 км. Отсек полезного груза имеет общий объем около 800 м3 и отделяется от К А на ГСО по плоскости стыковки с двигательным модулем.

При выведении на низкую орбиту КА размещается в контейнере полезного груза РН “Энергия”. Контейнер полезного груза раскрывается и сбрасывается после выведения РН на высоте Нкр – ~ 200 км. Затем включаются двигатели ускорителя, и при достижении КА опорной орбиты высотой Нкр ~ 600… 800 км ускорители сбрасываются. На опорной орбите по команде с Земли проводятся операции раздвижения ферм ХИ и их раскрытие. Далее проводится запуск реактора и вывод СЭП на уровень заданной мощности. После тестирования подсистем КА он переводится в положение гравитационной ориентации. Включаются маршевые ЭРДУ.

Согласно расчетам время выведения КА с указанными параметрами на ГСО составит примерно 60 сут, при этом большую часть времени КА будет находиться в радиационных поясах разной интенсивности. Если защиту управления КА и полезного груза выполнить из алюминия, обеспечив ее удельную массу до 1 г/см2, суммарная радиационная доза не превысит 2*104 рад. После выведения на орбиту полезный груз отделяется от КА, а КА при необходимости переводится на геоцентрическую орбиту.

Таким образом, проведенные исследования показывают следующее:

    использование РН “Энергия” и ЯЭРДУ мощностью 3 МВт с турбомашинным преобразованием и МПД-двигателем, имеющим КПД ~ 0,7 и удельный импульс 5000 с, позволяет вывести на ГСО полезный груз массой 35 т за 60 сут;

    использование ЯЭРДУ вдвое увеличивает по сравнению с ЖРД массу и объем полезного груза, выводимого на ГСО;

    ядерная безопасность КА на всех этапах жизненного цикла при штатных и аварийных ситуациях может быть обеспечена с помощью активных и пассивных средств защиты;

    реализуемость предлагаемой концепции электроракетного двигателя подтверждается рядом экспериментальных и расчетно-теоретических работ, выполненных в России и за рубежом.

В настоящее время Россия обладает возможностями решения такой задачи, поскольку располагает мощной РН “Энергия”, а также научно-техническим заделом по космической ядерной и двигательной установке. Наряду с ЯЭДУ, обладающими повышенной радиационной опасностью, дальнейшее развитие получат и ракетные двигатели традиционных схем.

Коммерческие средства дистанционного зондирования Земли из космоса только начинают свое развитие. Сельское хозяйство, региональное развитие, строительство, добывающая промышленность все шире используют данные ДЗЗ. Существующие космические средства ДЗЗ, такие как Spot, Landsat и т.п., не являются чисто коммерческими, несмотря на рыночные принципы распространения получаемой информации. Эти системы субсидируются государственными органами, так как на современном этапе их…

Национальный центр космических исследований КНЕС (CNES) ведет как гражданские, так и военные космические программы (во взаимодействии с МО). Создана военная система спутниковой связи Sirakus (1988 г.) на основе КА Telecom. С 1995 г. запускаются разведывательные КА Helios, созданные на базе КА Spot. Ведется разработка КА Helios-2 с участием других европейских стран. Продолжается эксплуатация КА ДЗЗ…

Впервые в истории ракетно-космической техники реализуется крупнейший международный проект – создание Международной космической станции. Ранее выполненные и реализуемые в настоящее время космические программы уступают проекту МКС по масштабу и объему задач, составу стран-участниц и организаций-соисполнителей, ответственности за решение вопросов надежности и безопасности в процессе создания и длительной эксплуатации МКС. Вопросам обеспечения надежности и безопасности уделялось…

Решение всей совокупности сложных конструкционных, схемотехнических и технологических задач при разработке, создании и эксплуатации космических средств невозможно без широкого развития и внедрения результатов космического материаловедения. При разработке космических средств требуются новые материалы, которые должны выдерживать нагрузки космических полетов (высокие температура и давление, вибрационные нагрузки на этапе выведения, низкие температуры космического пространства, глубокий вакуум, радиационное воздействие,…

Космодром – это оборудованная в инженерном отношении территория, на которой размещены функционально увязанные между собой сооружения и технические средства, обеспечивающие прием с заводов-изготовителей и хранение элементов ракетно-космической техники, подготовку средств выведения и космических аппаратов и их пуск. При использовании многоразовых средств выведения на космодроме могут быть созданы ремонтно-профилактические позиции для обеспечения послеполетного обслуживания этих средств….

Основу комплексов средств автоматизации (КСА) центров управления полетом КА и центров обработки информации, эксплуатируемых в НАКУ в 1990-х гг., составляли малопроизводительные вычислительные системы второго и третьего поколений, более 50 % которых многократно выработали установленный ресурс, устарел и морально и физически (ЭВМ серии СМ, М-222, ВК-2М45/46, “Эльбрус-1” и др.) Уровень автоматизации управления КА составлял 70-80%. Неудовлетворительное…

Космические средства выведения представляют собой сложные технические транспортные системы, предназначенные для доставки полезных нагрузок в космическое пространство на заданные орбиты. Все существующие космические средства выведения, а также средства, эксплуатация которых будет осуществляться в обозримой перспективе (25…30 лет), имеют в своей основе принцип реактивного движения. Первые сообщения о применении устройств, использующих этот принцип, появились в китайских…

Великобритания эксплуатирует военные КА связи Skynet, участвует в управлении КА связи НАТО. Великобритания считается крупнейшим в Европе (и вторым в мире) потребителем космической информации с разных КА многих стран и организаций. Результаты обработки данных (включая снимки с метео-КА и КА ДЗЗ), накопленные за ряд лет, могут использоваться в военных целях, например во время кризисных ситуаций….

Международное сотрудничество в области коммерческих космических программ в 1980-1990 гг. существенно расширилось. Вслед за организацией первых консорциумов Intelsat, Inmarsat последовало создание значительного числа всемирных и региональных систем и программ – Comsat, Landsat, Meteosat, Eutelsat, Panamsat, Asiasat, Iridium, GlobalStar и т.п. В 1998 г. начато создание Международной космической станции. Основные особенности этапа: значительное увеличение объема работ,…

Развитие средств выведения полезных грузов в космическое пространство (ракет-носителей) в нашей стране шло по нескольким направлениям. Первое направление, возникшее в 1957 г., связано с созданием ряда РН на базе межконтинентальной баллистической ракеты (МБР) Р-7. Эта МБР была разработана в знаменитом ОКБ-1 (с 1966 г. – Центральное конструкторское бюро экспериментального машиностроения (ЦКБЭМ), с 1974 г. –…

Для военки - это прекрасно, но перспективы для гражданки это открывает еще более невероятные. Голосовать!

Москва, 4 мар - ИА сайт. Военные в России завершили испытания малогабаритной ядерной энергетической установки (МЯЭУ) для крылатых ракет и автономных подводных аппаратов.

Власти РФ не 1 й раз допускают такие утечки, которые позже подтверждаются фактически.

Можно верить и нынешнему сигналу, ведь скоро выборы Президента, и успешные испытания МЯЭУ - это отличный инфоповод.

Это не просто инфоповод - это фантастика, особенно для крылатых ракет.

Это настолько невероятно, что на Западе до сих пор скептически относились к словам В. Путина.

Подтверждение завершения таких испытаний должно, вероятно, убедить всех неверующих.

В понимании обывателей, ядерная энергетическая установка - это что-то вроде атомной электростанции (АЭС).

О малогабаритной ядерной установке говорилось с 1950 гг. О малогабаритной американской ядерной установке увлекательно написано в романе А.Маклина Золотое Рандеву.

Но чтобы вот так просто в послании к ФС РФ объявить о крылатой ракете с ядерной энергетической установкой на весь мир?

Ошеломил, откровенно.

Президент РФ В. Путин 1 марта 2018 г с опозданием почти на 1 квартал зачитал послание к Федеральному Собранию России, используя самые современные средства продвижения информации в умы слушателей.

К обычной харизме В. Путина политтехнологи добавили инфографики, после чего стало ясно, что все слова кандидата в президенты попадут в цель.

Военке В. Путин посвятил времени в разы больше, чем гражданке.

Если по гражданским направлениям развития общества и экономики, в основном, в Послании были прекрасные намерения, то военная промышленность доказала свою приоритетность.

Темпы развития промышленности в царской России всегда опережали среднемировые.

После рекордного 1914 г испуг мировой элиты был настолько серьезен, что в 1917 г случилась Великая октябрьская социалистическая революция, которая на много лет отбросила нашу страну назад.

СССР позже выправился, но с тех пор лидером всей экономики всегда была военная промышленность, которая под контролем властей стремительно развивалась.

Ничего не изменилось и сейчас.

Экономика страны развивается крайне неравномерно.

Санкции Запада - это унизительный щелчок по носу властям России.

В 1914 г было невозможно представить, что кто-то может вводить такие санкции против России.

Ныне в нефтегазе санкции больно ударяют по российским компаниям, потому что в РФ нет инновационных технологий и оборудования для работы:

В Арктике;

На шельфе при глубине моря более 150 м;

По добыче трудноизвлекаемых запасов (), в тч сланцевых углеводородов.

сайт говорит о нефтегазе, потому что это наш профиль, но такая же ситуация пока и во многих других отраслях промышленности.

Но только не в военной промышленности.

И В. Путин это изящно доказал конкретными примерами, ошеломив обывателей и не только, обилием не имеющим аналогов в мире военных новинок: ракетный комплекс Сармат, подводные беспилотники, крылатая ракета с ядерной энергоустановкой, авиационный ракетный комплекс Кинжал, лазерное и гиперзвуковое оружие.

Впечатляют все новинки, но о малогабаритной ядерной энергетической установки (МЯЭУ) нужно сказать отдельно.

Успешные испытания МЯЭУ открывают невероятные перспективы для гражданских отраслей промышленности, в 1 ю очередь энергетике и транспорте.

Это совершеннейшая фантастика, как в романах Ж. Верна.

Как можно применить МЯЭУ и где:

Железнодорожный транспорт- высокоскоростные транспортные средства обычной эксплуатации, реально высокоскоростные со скоростью более 500 км/час;

Гражданский морской транспорт и военный флот - скорости будут более 60 узлов, как у глиссеров на подводных крыльях, но и о крыльях придется подумать тоже;

Автотранспорт, в 1 ю очередь, грузовики, вероятно;

Авиация - вертикальный взлет и посадка даже для грузовых самолетов.

Все это связано с малогабаритностью энергетической установки и эффективностью топлива, позволяющего сократить периодичность заправки.

Обыватели это знают, потому что это реализовано на атомных ледоколах и подводных крейсерах.

Что касается собственно МЯЭУ - то это большой секрет.

Говорится о ядерной установке, а не ядерном двигателе, поэтому можно предположить, что есть какой-то двигатель преобразующий ядерную энергию в энергию движения.

Можно только догадываться о технологии его работы, хотя, если анонсированную неограниченность воспринимать буквально, несколько предположений сделать можно:

Речь идет о крылатой ракете, поэтому в технологии работы, вероятно, активно используется воздух, количество которого неограничено;

При использовании подводного беспилотника неограниченного радиуса действия, очевидно, для формирования тяги в технологии используется также неограниченный ресурс -вода, хотя и агрессивная для материалов среда.

Можно не сомневаться, что военная промышленность при прямом управлении эффективно внедрит все новые, фантастические разработки российских умельцев, сделав Россию более защищенной от врагов.

Но есть большая вероятность того, что на гражданке Запад Россию опередит, как это бывало не раз.

Как адаптировать военные разработки в гражданских отраслях промышленности?

Именно здесь - камень преткновения.

Коррупция в РФ душит конкуренцию и активность бизнеса, поэтому в России так много талантливых разработок и так мало внедрения этих разработок.

В чем преимущества МЯЭУ?

Проблема оснащения космических аппаратов надежными системами энергообеспечения стала очевидна почти сразу после запусков первых искусственных спутников Земли. Химические аккумуляторные батареи, применявшиеся в те годы, не могли удовлетворить стремительно растущие потребности в энергообеспечении для решения серьезных энергоемких задач в космосе.

Один из них предусматривал применение солнечных батарей для питания бортовой аппаратуры полезной нагрузки и служебных систем космического аппарата (КА). Этот вариант было достаточно просто реализовать в техническом плане, он был относительно дешев и надежен при эксплуатации. Однако в те годы элементы солнечных батарей в процессе эксплуатации достаточно быстро деградировали, плюс ко всему они не могли обеспечить энергией спутник, когда он находился на теневом участке орбиты – в этом случае энергия поступала от аккумуляторов, имеющих значительную массу и небольшой срок службы. Тем не менее, сейчас, в связи с появлением новых материалов и технологий для производства солнечных батарей, этот способ обеспечения энергией космических аппаратов является основным в мировой космонавтике.

Космические аппараты с радиоизотопными источниками энергии

Другой вариант предусматривал использование ядерных источников энергии. Но их применение на космических аппаратах сопряжено с решением большого комплекса проблем обеспечения радиационной безопасности – как биосферы Земли на участке выведения спутника, так и полезной нагрузки КА в космическом пространстве. Первый опыт решения этих задач в нашей стране был получен при запуске в космос космических аппаратов с радиоизотопными источниками энергии. В 1965 г. были запущены два экспериментальных КА связи типа «Стрела-1» с радиоизотопными термоэлектрическими генераторами (РИТЭГ) «Орион-1», работающими на полонии-210. Вес генераторов составлял 14,8 кг, электрическая мощность – 20 Вт, срок работы – 4 месяца. В последующие годы проводились работы, направленные на повышение мощности и ресурса РИТЭГ для луноходов и автоматических межпланетных станций. В то же время разработанные конструкции РИТЭГ отличались между собой применяемыми изотопами, термоэлектрическими материалами, конструктивными формами и т.п. Все это значительно усложняло и удорожало создание подобных энергетических установок.

Сравнительно низкая энергоемкость, высокая стоимость РИТЭГ, сложности с решением проблем их использования в космосе, успехи в разработке энергетических установок на основе ядерного реактора явились причиной прекращения работ по новым РИТЭГ для космоса.


Рис. 1. Макет ЯЭУ «Тополь»

Термоэлектрические реакторы-преобразователи

Использование термоэлектрических и термоэмиссионных преобразователей энергии в сочетании с ядерными реакторами позволило создать принципиально новый тип установок, в которых источник тепловой энергии (ядерный реактор) и преобразователь тепловой энергии в электрическую объединены в единый агрегат – реактор-преобразователь.

Первый советский термоэлектрический реактор-преобразователь «Ромашка» был впервые запущен в Институте атомной энергии («Курчатовский институт») 14 августа 1964 г. Реактор на быстрых нейтронах имел тепловую мощность 40 кВт и использовал в качестве топлива карбид урана. Термоэлектрический преобразователь на кремний-германиевых полупроводниковых элементах выдавал мощность до 800 Вт. Основоположник практической космонавтики, академик С.П.Королев намеревался использовать «Ромашку» на космических аппаратах в сочетании с импульсными плазменными двигателями, но его уход из жизни в 1966 г. не дал осуществиться этим планам. Испытания «Ромашки» закончились в середине 1966 года, но реактор так и не был использован в космосе.

Американские космические аппараты с ЯЭУ

Первой в мировой практике ядерной энергетической установкой (ЯЭУ), примененной на космическом аппарате, стала американская ЯЭУ SNAP-10A, размещенная на космическом аппарате Snapshot, который был выведен на орбиту 3 апреля 1965 года. Предполагалось провести летные испытания реактора в течение 90 суток. Реактор на тепловых нейтронах использовал уран-235 в качестве топлива, гидрид циркония как замедлитель и натрий-калиевый расплав в качестве теплоносителя. Тепловая мощность реактора составляла около 40 кВт. Электрическая мощность, обеспечиваемая термоэлектрическим преобразователем, составляла от 500 до 650 Вт. Реактор успешно проработал 43 дня – до 16 мая 1965 года.

Тем не менее, США вскоре свернули свою программу по космическим ЯЭУ. Так, 18 мая 1968 г. был запущен последний, на сегодняшний день, американский спутник с ядерным реактором. Увы, на участке выведения потерпела катастрофу ракета-носитель «Тор-Аджена-Д», которая должна была вывести на орбиту метеорологический спутник «Нимбус-В» с ЯЭУ SNAP-19B2. Благодаря прочности конструкции аппарата он не разрушился. Позднее он был найден и поднят на борт корабля американских ВМС. К счастью, радиоактивного заражения мирового океана не произошло. После этого США запустили ряд космических аппаратов с радиоизотопными генераторами, включая межпланетные автоматические станции «Пионер» и «Вояджер», а также пилотируемые космические корабли «Аполлон». Последним американским космическим аппаратом с радиоизотопным генератором стал межпланетный зонд «New Horizons», запущенный к Сатурну в январе 2006 г.

Советские космические аппараты с ЯЭУ

Первый советский спутник с ядерной энергетической установкой был запущен 3 октября 1970 г. Это был прототип космического аппарата радиолокационной разведки «УС-А» («Космос-367»), разработанный и изготовленный ЦКБ машиностроения (г.Реутов, генеральный конструктор В.Н.Челомей). Следует отметить, что к началу 1970-х годов ЦКБ машиностроения было загружено выполнением правительственных заданий по созданию новых противокорабельных крылатых ракет, космической орбитальной станции «Алмаз» и другими важными работами. Поэтому еще с мая 1969 г. весь комплекс работ по космическим аппаратам «УС-А», включая выпуск конструкторской и эксплуатационной документации, освоение серийного производства, проведение наземной и летно-конструкторской отработки космических комплексов, сдачу их в эксплуатацию, проводился ленинградскими Конструкторским бюро и заводом «Арсенал» имени М.В.Фрунзе.

Космический аппарат «УС-А» был оснащен радиолокатором одностороннего бокового обзора и был предназначен для обнаружения надводных кораблей и авианосных соединений противника. В качестве энергетической установки КА была использована ЯЭУ БЭС-5 «Бук» мощностью 3 кВт с термоэлектрическим преобразованием тепловой энергии (разработчик ЯЭУ – НПО «Красная Звезда»). Для обеспечения радиационной безопасности после завершения срока активного существования в составе КА была предусмотрена специальная твердотопливная двигательная установка, обеспечивающая увод энергетической части космического аппарата на орбиту с длительным сроком существования – продолжительностью не менее 10 периодов полураспада наиболее «живучих» изотопов ЯЭУ.


Рис. 2. КА УС-АМ

За время серийного производства спутников типа «УС-А» удалось увеличить срок активного существования изделий с 45 до 120 суток, при этом были решены задачи по защите бортовой аппаратуры КА от радиационного воздействия ЯЭУ.

В эти же годы коллективом КБ «Арсенал» проводились работы по модернизации КА «УС-А», направленные на кардинальное улучшение тактико-технических характеристик и увеличение срока активного существования. Результатом этого стало создание во второй половине 1980-х гг. космического аппарата двухстороннего радиолокационного обзора – «УС-АМ». Срок активного существования КА «УС-АМ» составил около 300 суток, применение локатора двухстороннего обзора позволило существенно расширить возможности КА с точки зрения целевого применения.

ЯЭУ с термоэмиссионными преобразователями

В то же время в Советском Союзе параллельно с работами по созданию ЯЭУ с термоэлектрическими генераторами проектировались ЯЭУ с термоэмиссионными преобразователями. Термоэмиссионное преобразование по сравнению с термоэлектрическим позволяет увеличить КПД, повысить ресурс и улучшить массогабаритные характеристики энергоустановки и космического аппарата в целом. В 1970–1973 гг. были созданы и прошли наземные энергетические испытания первые три прототипа термоэмиссионной ЯЭУ. Эти испытания непосредственно подтвердили возможность стабильного получения удовлетворительных выходных параметров реактора-преобразователя. Работы шли по ЯЭУ двух типов: ТЭУ-5 «Тополь» (Топаз-1) и «Енисей» (Топаз-2). Летные испытания двух образцов ЯЭУ «Тополь» были проведены в 1987–1988 гг. на КА «Плазма-А» разработки КБ «Арсенал» («Космос-1818» и «Космос-1867»). ЯЭУ на КА «Космос-1818» проработала в течение 142 суток, а ЯЭУ на «Космос-1867» – в течение 342 суток. В обоих случаях окончание работы ЯЭУ было связано с плановым исчерпанием запасов цезия, используемого при работе термоэмиссионного реактора-преобразователя.


Рис. 3

Отличительной чертой установки «Тополь» стало соединение реактора с термоэмиссионным (термоионным) преобразователем тепловой энергии в электрическую. Такой преобразователь подобен электронной лампе: катод из молибдена с вольфрамовым покрытием, нагретый до высокой температуры, испускает электроны, которые преодолевают промежуток, заполненный ионами цезия под низким давлением, и попадают на анод. Электрическая цепь замыкается через нагрузку.

Реактор (топливо – диоксид урана с 90% обогащением, теплоноситель – калий-натриевая смесь) имел тепловую мощность 150 кВт, причем количество урана-235 в реакторе было снижено до 11,5 кг по сравнению с 30 кг в БЭС-5 «Бук». Выходная электрическая мощность преобразователя составляла от 5 до 6,6 кВт.

В свою очередь, реактор-преобразователь «Енисей» разрабатывался ленинградским ЦКБ машиностроения по заказу НПО прикладной механики (г.Железногорск) для геостационарного КА непосредственного телевещания «Эстафета». Тепловая мощность «Енисея» была порядка 115–135 кВт, электрическая мощность 4,5–5,5 кВт. Расчетный срок службы был не менее 3 лет.

Международное сотрудничество по космическим ЯЭУ

Согласно ряду сообщений в прессе, в 1992 году США приобрели в России за 13 млн. долларов две ЯЭУ «Енисей». Один из реакторов, поставленных в США, предполагалось после тщательных наземных испытаний использовать в 1995 г. в «Космическом эксперименте с ядерно-электрической двигательной установкой». Однако в 1996 г. этот довольно дорогостоящий проект был закрыт.

Другие проекты космических реакторов 1990-х годов также не дошли до летных испытаний. Так, в 1993 г. были закрыты два американских проекта для Стратегической оборонной инициативы: ЯЭУ SP-100 с максимальной выходной электрической мощностью от 40 до 300 кВт и сроком службы от 3 до 7 лет и особо мощная установка на 5 МВт электрической мощности. В России проводилась разработка мощной двухрежимной установки «Топаз-100/40» («Топаз-3») для геостационарного космического аппарата. В режиме 100 кВт установка должна была обеспечить перевод КА с помощью электроракетных двигателей с начальной радиационно-безопасной орбиты (800 км) на геостационарную, а в режиме 40 кВт – для питания целевой аппаратуры в течение 7 лет.

Немалую роль в прекращении эксплуатации космических аппаратов с ЯЭУ сыграло настороженное после чернобыльской катастрофы отношение мировой общественности к ядерной энергетике вообще. К концу 1980-х годов обывателю, по крайней мере, на Западе, уже было известно об авариях космических аппаратов с ядерными энергоустановками – как советскими, так и американскими.

Радиационные аварии космических ЯЭУ

Наиболее серьезные аварии (с радиационным загрязнением) со спутниками, оснащенными ЯЭУ, происходили, по сути, трижды. Первая случилась 21 апреля 1964 г., когда аварией закончился запуск американского навигационного спутника «Транзит-5В» с ядерной энергетической установкой SNAP-9A на борту, а находившиеся в ней 950 граммов плутония-238 рассеялись в земной атмосфере, вызвав существенное повышение естественного радиоактивного фона. Вторая произошла 24 января 1978 г. уже с советским КА радиолокационной разведки «УС-А» («Космос-954»). В результате неконтролируемого схода спутника с орбиты при прохождении плотных слоев земной атмосферы произошло разрушение космического аппарата, а его обломки упали в северо-западных районах Канады. Произошло незначительное радиоактивное загрязнение поверхности, правительство СССР выплатило Канаде компенсацию, но ущерб в этом случае был в большей степени политическим – СССР обвинили в милитаризации космоса, а КА «УС-А» пришлось дооснащать дублирующей системой обеспечения радиационной безопасности, и пуски таких аппаратов возобновились только в 1980 году. В феврале 1983 г. в пустынных районах Южной Атлантики снова упал КА «УС-А» («Космос-1402»). Однако в этот раз конструктивные доработки после предыдущей аварии позволили отделить активную зону от термостойкого корпуса реактора и предотвратить компактное падение обломков. Тем не менее, было зафиксировано незначительное повышение естественного радиационного фона.

Последний инцидент со спутником «УС-А» («Космос-1900») случился в 1988 г., когда, как казалось, было не избежать повторения канадского скандала, но за несколько дней до входа космического аппарата в плотные слои атмосферы сработала аварийная защитная система и активная зона реактора была успешно отделена и переведена на орбиту захоронения.

За месяц до этого был запущен модернизированный КА «УС-АМ» («Космос-1932»). И хотя в этот раз полет прошел нормально, от эксплуатации аппаратов с ядерными энергетическими установками было решено отказаться «до лучших времен». Тем более, что в это время на СССР оказывалось серьезное давление со стороны США и международных организаций, требовавших от Советского Союза «прекратить загрязнение космоса».


Рис. 4. JIMO (журнал «Новости космонавтики»)

Экологическая безопасность космических ЯЭУ

В нашей стране с самого начала работ по космическим аппаратам с ЯЭУ огромное значение придавалось обеспечению экологической безопасности на всех этапах эксплуатации таких КА. С учетом специфики работы реактора, накопления в нем радиоактивности и ее последующего спада, были приняты следующие принципы обеспечения безопасности:

Сохранение реактора ЯЭУ в подкритичном состоянии (т.е. без протекания реакции деления) до выхода КА на орбиту, в том числе во всех аварийных ситуациях;

Включение реактора ЯЭУ только на рабочей орбите КА;

Обязательное выключение реактора после выполнения спутником заданной программы, а также при возникновении аварийной ситуации;

Изоляция ЯЭУ от населения Земли в течение времени, необходимого для снижения радиоактивности выключенного реактора до безопасного уровня;

При невозможности изоляции – диспергирование (дробление) ЯЭУ до уровней, обеспечивающих безопасность населения на территории выпадения фрагментов установки.

Эти принципы были в дальнейшем одобрены Комитетом ООН по космосу и закреплены в ныне действующем документе «Принципы, касающиеся использования ядерных источников энергии в космическом пространстве», принятом Генеральной Ассамблеей ООН в 1992 году.

Перспективы развития космических ЯЭУ

Как видно из истории, использование ядерной энергии в космосе остается опасным и дорогостоящим делом, но игра всё же стоит свеч. В настоящее время в России ведется отработка и создание космических ядерных энергетических установок следующего поколения. Ранее созданные установки «Бук» и «Тополь» имели уровень мощности 3-10 кВт и ресурс работы от 3 месяцев до одного года. Имеется практический задел по созданию установок мощностью до 100 кВт и с ресурсом работы от 5 до 10 лет.

Применение ядерных энергоустановок в космосе в соответствии с принятой идеологией предусматривает их использование только в тех сферах, где нет возможности решить задачу с помощью других источников энергии. Главным источником энергии на околоземных орбитах являются солнечные элементы, мощность и КПД которых за последнее время значительно выросли. Если еще несколько лет назад разработчики ЯЭУ ориентировались на уровень мощности 20 кВт, то сегодня такой уровень планируется обеспечивать солнечными источниками энергии. В то же время для полетов в дальний космос использование ЯЭУ практически не имеет альтернативы. Для таких масштабных проектов, как экспедиция на Марс, преимущество использования ядерной энергетики не вызывает сомнений. Причем ЯЭУ может служить не только источником энергии для жизнеобеспечения экипажа и питания аппаратуры, но и средством, обеспечивающим движение, в том числе с помощью ядерного ракетного двигателя. В соответствии с современными представлениями это может быть транспортно-энергетический модуль, обеспечивающий вывод аппарата на орбиту или возможность смены орбиты. Такая двухрежимная установка с уровнем мощности около 100 кВт обеспечит вывод космического корабля на рабочую орбиту, и уже там обеспечит энергопитание на более низком уровне мощности.

Американские программы по атомным технологиям для космоса

В США после долгого перерыва решили вернуться к использованию космических ЯЭУ. В августе 2006 года президентом Бушем и конгрессом был принят очень важный документ – «Национальная космическая политика США». В нем недвусмысленно говорится о необходимости достижения государственного приоритета в области космических технологий, в том числе атомных. В США уже ведутся предварительные исследования по созданию первой в мире межпланетной станции, использующей ядерный реактор как источник питания бортовой электрореактивной двигательной установки и научной аппаратуры с высоким уровнем энергопотребления. Станция предназначена для исследования трех из четырех галилеевых спутников Юпитера – Европы, Ганимеда и Каллисто – и потому названа JIMO (Jupiter Icy Moon Orbiter, Орбитальный аппарат для ледяных лун Юпитера). Она должна окончательно установить, существуют ли под ледяной корой этих больших спутников океаны, в которых может быть жизнь.

Проект JIMO должен продемонстрировать безопасность ядерных реакторов и надежность эксплуатации ядерных реакторов в космосе. Ядерная энергетическая установка этого аппарата должна дать в 100 раз больше электроэнергии, чем энергетические установки, применявшиеся для межпланетных перелетов ранее. Все это откроет новые возможности для исследований, включая более гибкий план полетов, в меньшей степени зависящий от взаимного расположения планет, а значит, дающий большее время для целевых работ в одной миссии.

Концепция развития космической ядерной энергетики в России

В 1998 г. Правительство Российской Федерации приняло постановление «О концепции развития космической ядерной энергетики в России». Эта Концепция направлена на сохранение лидирующих позиций России в области космических ядерных технологий, высококвалифицированных кадров, уникальной экспериментальной и производственно-технологической баз, инфраструктуры научных центров и предприятий, которые осуществляют работы в данной области.

Таким образом, сейчас наблюдается настоящий ренессанс космической ядерной энергетики – для решения амбициозных энергоемких задач на околоземной орбите и в дальнем космосе требуется колоссальная энергия, дать которую в настоящее время способны только ядерные энергетические установки. При должном финансировании и внимании мирового ученого сообщества к этой технологии человечество уже в ближайшей перспективе будет способно подойти к промышленному освоению космоса, пилотируемому полету на Марс и исследованию дальних планет.

П.А.Карасев,

ФГУП «Конструкторское бюро «Арсенал» имени М.В.Фрунзе»,

Санкт-Петербург

http://proatom.ru/modules.php?name=News&file=article&sid=995

В 2009 г. Комиссией при Президенте Российской Федерации по модернизации и технологическому развитию экономики России принято решение о реализации проекта «Создание транспортно-энергетического модуля на основе ядерной энергодвигательной установки мегаваттного класса».
ОАО «НИКИЭТ» определен Главным конструктором реакторной установки.
Федеральное космическое агентство выдало НИКИЭТ лицензию №981К от 29.08.2008 г. на осуществление космической деятельности.

Из интервью Ю.Г. Драгунова РИА « ». Опубликовано 28.08.2012

Россия активно развивает атомную энергетику, опираясь на колоссальный опыт и знания, накопленные за десятилетия отечественной атомной программы.
Одним из первопроходцев по созданию прорывных технологий в нашей стране и в мире является Научно-исследовательский и конструкторский институт энерготехники имени Н.А. Доллежаля (НИКИЭТ), отмечающий в этом году 60-летний юбилей. Специалисты института внесли неоценимый вклад в обороноспособность нашей страны, разработали проекты первого реактора для наработки оружейных изотопов, первой реакторной установки для атомной подводной лодки, первого энергореактора для АЭС. По проектам и с участием НИКИЭТ создано 27 исследовательских реакторов в России и за её пределами.
И сегодня Институт конструирует совершенно новые реакторы, работает над созданием реакторной установки для уникальной ядерной энергодвигательной установки мегаваттного класса для космического корабля, не имеющей мировых аналогов.
О том, как идут работы по прорывным направлениям российской ядерной науки и техники, РИА Новости рассказал директор - генеральный конструктор НИКИЭТ, член-корреспондент РАН Юрий Григорьевич Драгунов.
- Институт создает уникальный ядерный двигатель для нового российского космического корабля. На каком этапе сейчас этот проект?
- Все 60 лет своего существования Институт следует девизу основателя и первого директора НИКИЭТ академика Н.А. Доллежаля: «Если можешь – иди впереди века». И подтверждение тому - данный проект. Создание этой установки - это комплексная работа ГНЦ ФГУП «Центр Келдыша», ОАО РКК «Энергия», КБХМ им. А.М. Исаева и предприятий Госкорпорации «Росатом». Наш Институт определен единственным исполнителем по реакторной установке и определен как координатор работ от организаций Росатома. Работа действительно уникальная, аналогов сегодня нет, поэтому она идет достаточно сложно. Поскольку мы – организация конструкторская, мы имеем определенные ступени, этапы и мы их шаг за шагом проходим. В прошлом году мы завершили разработку эскизного проекта реакторной установки, в этом году выполняем технический проект реакторной установки. Требуется огромный объем испытаний, особенно топлива, в том числе исследования поведения топлива и конструкционных материалов в реакторных условиях. Работа по техническому проекту будет достаточно длинной, примерно около 3-х лет, но первую стадию технического проекта, основную документацию мы в этом году подготовим. Мы сегодня определили и приняли техническое решение по выбору варианта конструкции тепловыделяющего элемента и окончательное техническое решение по выбору варианта конструкции реактора. И буквально пару недель назад приняли техническое решение по выбору варианта конструкции активной зоны и по ее компоновке.
- А какие проблемы есть? Неужели все так гладко идет?
- Сегодня у нас достаточно широкая кооперация, более трех десятков организаций участвуют в разработке проекта реакторной установки. Все договоры по этой теме заключены, и есть полная уверенность, что мы эту работу сделаем вовремя. Работа координируется советом руководителя проекта под моим председательством, мы раз в квартал рассматриваем состояние работ. Одна проблема, я не могу о ней не сказать. К сожалению, как и везде по всей тематике, у нас договоры заключаются сроком на один год. Процесс заключения растягивается, и, с учетом времени на конкурсные процедуры, фактически мы съедаем у себя время. Я в НИКИЭТ принял решение, мы открываем специальный заказ и начинаем работать с 11 января. А вот участников гораздо труднее привлечь. Проблема есть, поэтому мы сегодня озадачили наших участников, чтобы они дали планы до завершения разработки, как минимум, на трехлетний период. Мы формируем эти предложения, и будем выходить в правительство с просьбой все-таки для этого проекта перейти на трехлетний контракт. Тогда мы будем четко видеть график и лучше организовывать и координировать работы по проекту. Решение этой задачи очень важно для успешной реализации проекта.
- Это будет чисто российский проект, никаких зарубежных партнеров для НИОКРов привлекать не будете?
- Я думаю, что проект будет чисто российский. Здесь все-таки очень много ноу-хау, много новых решений и, по моему мнению, проект должен быть чисто российский.
- Топливо в космической реакторной установке какое будет?
- Принципиально на этой стадии технического проекта приняли вариант диоксидного топлива. Того топлива, которое имеет опыт эксплуатации в установках с термоэмиссией. Мы сделали тепловыделяющий элемент секционным, чтобы обеспечить те условия, которые уже проверены в действующих реакторах. Да, это новизна, да, это инновационный проект, но по ключевым элементам он должен быть отработан и должен успеть в те сроки, которые поставлены президентским проектом.
- Вы рассматриваете вариант перегрузки топлива в установке?
- Нет, вариант перегрузки мы на сегодня не рассматриваем. Это может быть многоразовое использование, но мы рассчитываем на 10 лет эксплуатации и я так полагаю, судя по результатам обсуждения в научной среде, с Роскосмосом, что на сегодня задача сделать работу установки дольше не ставится. Роскосмос обсуждает увеличение мощности установки, но это, в общем-то, не будет проблемой, если мы этот проект сделаем, реализуем и самое главное – испытаем на стенде наземный прототип. После этого мы его легко переработаем на большую мощность.

Создание ядерных энергетических и энергодвигательных установок космического назначения

На Семипалатинском полигоне с 1960 года по 1989 год проводились работы по созданию ядерного ракетного двигателя.

Были созданы:

Реакторный комплекс ИГР;
стендовый комплекс «Байкал-1» с реактором ИВГ-1 и двумя рабочими местами для отработки изделий 11Б91;
реактор РА (ИРГИТ).

Реактор ИГР

Реактор ИГР является импульсным реактором на тепловых нейтронах с гомогенной активной зоной, представляющей собой кладку из содержащих уран графитовых блоков, собранных в виде колонн. Отражатель реактора сформирован из аналогичных блоков, не содержащих урана.

Реактор не имеет принудительного охлаждения активной зоны. Выделившееся в процессе работы реактора тепло аккумулируется кладкой, а затем через стенки корпуса реактора передается воде контура расхолаживания.


Реактор ИГР



Реактор ИВГ-1 и системы подачи компонентов


Реактор РА (ИРГИТ)

Достигнутые результаты

1962-1966 годы

В реакторе ИГР проведены первые испытания модельных твэлов ЯРД. Результаты испытаний подтвердили возможность создания твэлов с твердыми поверхностями теплообмена, работающих при температурах свыше 3000К, удельных тепловых потоках до 10 МВт/м2 в условиях мощного нейтронного и гамма-излучений (проведен 41 пуск, испытано 26 модельных ТВС различных модификаций).

1971-1973 годы

В реакторе ИГР проведены динамические испытания высокотемпературного топлива ЯРД на термопрочность, в ходе которых реализованы следующие параметры:

Удельное энерговыделение в топливе – 30 кВт/см3
удельный тепловой поток с поверхности твэлов – 10 МВт/м2
температура теплоносителя – 3000К
скорость изменения температуры теплоносителя при увеличении и снижении мощности – 1000 К/с
длительность номинального режима – 5 с

1974-1989 годы

В реакторе ИГР проведены испытания ТВС различных типов реакторов ЯРД, ЯЭДУ и газодинамических установок с водородным, азотным, гелиевым и воздушным теплоносителями.

1971-1993 годы

Проведены исследования выхода из топлива в газообразный теплоноситель (водород, азот, гелий, воздух) в диапазоне температуры 400…2600К и осаждения в газовых контурах продуктов деления, источниками которых являлись экспериментальные ТВС, размещенные в реакторах ИГР и РА.

Сравнительные показатели результатов, полученных на реакторе ИВГ-1
и по программам разработок ЯРД в США

СССР
1961-1989
Затраченные средства, млрд.$ ~ 0,3
5
поэлементный
Топливная композиция
UC-ZrC,
UC-ZrC-NbC


средняя/максимальная, МВт/л 15 / 33
3100
Удельный импульс тяги, с ~ 940
4000

США
Период активных действий по тематике 1959-1972
Затраченные средства, млрд.$ ~2,0
Количество изготовленных реакторных установок 20
Принципы отработки и создания интегральный
Топливная композиция Твердый раствор
UC2 в графитовой
матрице

Теплонапряженность активной зоны,
средняя/максимальная, МВт/л 2,3 / 5,1
Максимально достигнутая температура рабочего тела, К 2550 2200
Удельный импульс тяги, с ~ 850
Ресурс работы на максимальной температуре рабочего тела, с 50 2400

просмотров