Биологическая роль ана и катаболизма. Энергетический обмен и общий путь катаболизма. Значение анаболизма и катаболизма

Биологическая роль ана и катаболизма. Энергетический обмен и общий путь катаболизма. Значение анаболизма и катаболизма

Анаболизм и катаболизм – это основные метаболические процессы.

Катаболизм – это ферментативное расщепление сложных органических соединений, осуществляющееся внутри клетки за счет реакций окисления. Катаболизм сопровождается выделением энергии и запасанием ее в макроэргических фосфатных связях АТФ.

Анаболизм – это синтез сложных органических соединений – белков, нуклеиновых кислот, полисахаридов – из простых предшественников, поступающих в клетку из окружающей среды или образующихся в процессе катаболизма. Процессы синтеза связаны с потреблением свободной энергии, которая поставляется АТФ (рис. 31).

Рис. 31 Схема путей метаболизма в бактериальной клетке

В зависимости от биохимии процесса диссимиляции (катаболизма) различают дыхание и брожение.

Дыхание – это сложный процесс биологического окисления различных соединений), сопряженный с образованием большого количества энергии, аккумулируемой в виде макроэргических связей в структуре АТФ (аденозинтрифосфат), УТФ (уридинтрифосфат) и т.д., и образованием углекислого газа и воды. Различают аэробное и анаэробное дыхание.

Брожение – неполный распад органических соединений с образованием незначительного количества энергии и продуктов, богатых энергией.

Анаболизм включает процессы синтеза, при которых используется энергия, вырабатываемая в процессе катаболизма. В живой клетке одновременно и непрерывно протекают процессы катаболизма и анаболизма. Многие реакции и промежуточные продукты являются для них общими.

Живые организмы классифицируют в соответствии с тем, какой источник энергии или углерода они используют. Углерод – основной элемент живой материи. В конструктивном метаболизме ему принадлежит ведущая роль.

В зависимости от источника клеточного углерода все организмы, включая прокариотные, делят на автотрофы и гетеротрофы.

Автотрофы используют CO 2 в качестве единственного источника углерода, восстанавливая его водородом, который отщепляется от воды или другого вещества. Органические вещества они синтезируют из простых неорганических соединений в процессе фото- или хемосинтеза.

Гетеротрофы получают углерод из органических соединений.

Живые организмы могут использовать световую или химическую энергию. Организмы, живущие за счет энергии света, называют фототрофными. Органические вещества они синтезируют, поглощая электромагнитное излучение Солнца (свет). К ним относятся растения, сине-зеленые водоросли, зеленые и пурпурные серобактерии.

Организмы, получающие энергию из субстратов, источников питания (энергия окисления неорганических веществ), называют хемотрофами. Кхемогетеротрофам относятся большинство бактерий, а так же грибы и животные.

Существует немногочисленная группа хемоавтотрофов . К таким хемосинтезирующим микроорганизмам относятся нитрифицирующие бактерии, которые, окисляя аммиак до азотистой кислоты, высвобождают необходимую для синтеза энергию. К хемосинтетикам относятся также водородные бактерии, получающие энергию в процессе окисления молекулярного водорода.

Углеводы как источник энергии

У большинства организмов расщепление органических веществ происходит в присутствии кислорода – аэробный обмен. В результате такого обмена остаются бедные энергией конечные продукты (СО 2 и Н 2 О), но высвобождается много энергии. Процесс аэробного обмена называется дыханием, анаэробного – брожением.

Углеводы – основной энергетический материал, который клетки используют в первую очередь для получения химической энергии. Кроме того, при дыхании могут использоваться также белки и жиры, а при брожении – спирты и органические кислоты.

Расщепление углеводов организмы осуществляют разными путями, в которых важнейшим промежуточным продуктом является пировиноградная кислота (пируват). Пируват занимает центральное место в метаболизме при дыхании и брожении. Выделяют три основных механизма образования ПВК.

1. Фруктозодифосфатный (гликолиз) или путь Эмбдена-Мейергофа-Парнаса – универсальный путь.

Процесс начинается с фосфорилирования (рис. 32). При участии фермента гексокиназы и АТФ глюкоза фосфорилируется по шестому углеродному атому с образованием глюкозо-6-фосфата. Это активная форма глюкозы. Она служит исходным продуктом при расщеплении углеводов любым из трех путей.

При гликолизе глюкозо-6-фосфат изомеризуется во фруктозо-6-фосфат, а затем под действием 6-фосфофруктокиназы фосфорилируется по первому углеродному атому. Образовавшийся фруктозо-1,6-дифосфат под действием фермента альдолазы легко распадается на две триозы: фосфоглицериновый альдегид и дигидроксиацетонфосфат. Дальнейшее превращение С 3 -углеводов осуществляется за счет переноса водорода и фосфорных остатков через ряд органических кислот с участием специфических дегидрогеназ. Все реакции этого пути, за исключением трех, протекающих с участием гексокиназы, 6-фосфофруктокиназы и пируваткиназы, полностью обратимы. На стадии образования пировиноградной кислоты заканчивается анаэробная фаза превращения углеводов.

Максимальное количество энергии, получаемое клеткой при окислении одной молекулы углеводов гликолитическим путем, равно 2·10 5 Дж.

Рис.32. Фруктозодифосфатный путь расщепления глюкозы

2. Пентозофосфатный (Варбурга-Дикенса-Хорекера) путь характерен также для большинства организмов (в большей степени для растений, а для микроорганизмов играет вспомогательную роль). В отличие от гликолиза ПФ путь не образует пируват.

Глюкозо-6-фосфат превращается в 6-фосфоглюколактон, который декарбоксилируется (рис. 33). При этом образуется рибулозо-5-фосфат, на котором завершается процесс окисления. Последующие реакции рассматриваются как процессы превращения пентозофосфатов в гексозофосфаты и обратно, т.е. образуется цикл. Считают, что пентозофосфатный путь на одном из этапов переходит в гликолиз.

При прохождении через ПФ путь каждых шести молекул глюкозы происходит полное окисление одной молекулы глюкозо-6-фосфата до CO 2 и восстановление 6 молекул НАДФ + до НАДФ·Н 2 . Как механизм получения энергии этот путь в два раза менее эффективен, чем гликолитический: на каждую молекулу глюкозы образуется 1 молекула АТФ.

Рис. 33. Пентозофосфатный путь расщепления глюкозо-6-фосфата

Основное назначение этого пути – поставлять пентозы, необходимые для синтеза нуклеиновых кислот, и обеспечивать образование большей части НАДФ·Н 2 , необходимого для синтеза жирных кислот, стероидов.

3. Путь Энтнера-Дудорова (кетодезоксифосфоглюконатный или КДФГ-путь) встречается только у бактерий. Глюкоза фосфорилируется молекулой АТФ при участии фермента гексокиназы (рис. 34).

Рис.34. Путь Энтнера-Дудорова расщепления глюкозы

Продукт фосфорилирования – глюкозо-6-фосфат – дегидрируется до 6-фосфоглюконата. Под действием фермента фосфоглюконатдегидрогеназы от него отщепляется вода и образуется 2-кето-3-дезокси-6-фосфоглюконат (КДФГ). Последний расщепляется специфичной альдолазой на пируват и глицеральдегид-3-фосфат. Глицеральдегид далее подвергается действию ферментов гликолитического пути и трансформируется во вторую молекулу пирувата. Кроме того, этот путь поставляет клетке 1 молекулу АТФ и 2 молекулы НАД·Н 2 .

Таким образом, основным промежуточным продуктом окислительного расщепления углеводов является пировиноградная кислота, которая при участии ферментов превращается в различные вещества. Образовавшаяся одним из путей ПВК в клетке подвергается дальнейшему окислению. Освобождающиеся углерод и водород удаляются из клетки. Углерод выделяется в форме CO 2 , водород передается на различные акцепторы. Причем может передаваться либо ион водорода, либо электрон, поэтому перенос водорода равноценен переносу электрона. В зависимости от конечного акцептора водорода (электрона) различают аэробное дыхание, анаэробное дыхание и брожение.

Дыхание

Дыхание – окислительно-восстановительный процесс, идущий с образованием АТФ; роль доноров водорода (электронов) в нем играют органические или неорганические соединения, акцепторами водорода (электронов) в большинстве случаев служат неорганические соединения.

Если конечный акцептор электронов – молекулярный кислород, дыхательный процесс называют аэробным дыханием . У некоторых микроорганизмов конечным акцептором электронов служат такие соединения, как нитраты, сульфаты и карбонаты. Этот процесс называется анаэробным дыханием .

Аэробное дыхание – процесс полного окисления субстратов до CO 2 и Н 2 О с образованием большого количества энергии в форме АТФ.

Полное окисление пировиноградной кислоты происходит в аэробных условиях в цикле трикарбоновых кислот (ЦТК или цикл Кребса) и дыхательной цепи.

Аэробное дыхание состоит из двух фаз:

1). Образующийся в процессе гликолиза пируват окисляется до ацетил-КоА, а затем до CO 2 , а освобождающиеся атомы водорода перемещаются к акцепторам. Так осуществляется ЦТК.

2). Атомы водорода, отщепленные дегидрогеназами, акцептируются коферментами анаэробных и аэробных дегидрогеназ. Затем они переносятся по дыхательной цепи, на отдельных участках которой образуется значительное количество свободной энергии в виде высокоэнергетических фосфатов.

Цикл трикарбоновых кислот (цикл Кребса, ЦТК)

Пируват, образующийся в процессе гликолиза, при участии мультиферментного комплекса пируватдегидрогеназы декарбоксилируется до ацетальдегида. Ацетальдегид, соединяясь с коферментом одного из окислительных ферментов – коферментом А (КоА-SH), образует «активированную уксусную кислоту» - ацетил-КоА – высокоэнергетическое соединение.

Ацетил-КоА под действием цитрат-синтетазы вступает в реакцию со щавелевоуксусной кислотой (оксалоацетат), образуя лимонную кислоту (цитрат С 6), которая является основным звеном ЦТК (рис. 35). Цитрат после изомеризации превращается в изоцитрат. Затем следует окислительное (отщепление Н) декарбоксилирование (отщепление СО 2) изоцитрата, продуктом которого является 2-оксоглутарат (С 5). Под влиянием ферментного комплекса ɑ-кетоглутаратдегидрогеназы с активной группой НАД он превращается в сукцинат, теряя СО 2 и два атома водорода. Сукцинат затем окисляется в фумарат (С 4), а последний гидратируется (присоединение Н 2 О) в малат. В завершающей цикл Кребса реакции происходит окисление малата, что приводит к регенерации оксалоацетата (С 4). Оксалоацетат взаимодействует с ацетил-КоА, и цикл повторяется снова. Каждая из 10 реакций ЦТК, за исключением одной, легко обратима. В цикл вступают два атома углерода в виде ацетил-КоА и такое же количество атомов углерода покидают этот цикл в виде СО 2 .

Рис. 35. Цикл Кребса (по В.Л. Кретовичу):

1, 6 – система окислительного декарбоксилирования; 2 – цитратсинтетаза, кофермент А; 3, 4 – аконитатгидратаза; 5 – изоцитратдегидрогеназа; 7 – сукцинатдегидрогеназа; 8 – фумаратгидратаза; 9 – малатдегидрогеназа; 10 – спонтанное превращение; 11 - пируваткарбоксилаза

В результате четырех окислительно-восстановительных реакций цикла Кребса осуществляется перенос трех пар электронов на НАД и одной пары электронов на ФАД. Восстановленные таким путем переносчики электронов НАД и ФАД подвергаются затем окислению уже в цепи переноса электронов. В цикле образуется одна молекула АТФ, 2 молекулы СО 2 и 8 атомов водорода.

Биологическое значение цикла Кребса заключается в том, что он является мощным поставщиком энергии и «строительных блоков» для биосинтетических процессов. Цикл Кребса действует только в аэробных условиях, в анаэробных он разомкнут на уровне α-кетоглутаратдегидрогеназы.

Дыхательная цепь

Последней стадией катаболизма является окислительное фосфорилирование. В ходе этого процесса высвобождается большая часть метаболической энергии.

Восстановленные в цикле Кребса переносчики электронов НАД и ФАД подвергаются окислению в дыхательной цепи или цепи транспорта электронов. Молекулы-переносчики – это дегидрогеназы, хиноны и цитохромы.

Обе ферментные системы у прокариот находятся в плазматической мембране, а у эукариот – во внутренней мембране митохондрий. Электроны от атомов водорода (НАД, ФАД) по сложной цепи переносчиков переходят к молекулярному кислороду, восстанавливая его, при этом образуется вода.

Баланс. Расчеты энергетического баланса показали, что при расщеплении глюкозы гликолитическим путем и через цикл Кребса с последующим окислением в дыхательной цепи до СО 2 и Н 2 О на каждую молекулу глюкозы образуется 38 молекул АТФ. Причем максимальное количество АТФ образуется в дыхательной цепи – 34 молекулы, 2 молекулы - в ЭМП-пути и 2 молекулы – в ЦТК (рис. 36).

Неполное окисление органических соединений

Дыхание обычно связано с полным окислением органического субстрата, т.е. конечными продуктами распада являются СО 2 и Н 2 О.

Однако некоторые бактерии и ряд грибов не до конца окисляют углеводы. Конечными продуктами неполного окисления являются органические кислоты: уксусная, лимонная, фумаровая, глюконовая и др., которые аккумулируются в среде. Этот окислительный процесс используется микроорганизмами для получения энергии. Однако общий выход энергии при этом значительно меньший, чем при полном окислении. Часть энергии окисляемого исходного субстрата сохраняется в образующихся органических кислотах.

Микроорганизмы, развивающиеся за счет энергии неполного окисления, используются в микробиологической промышленности для получения органических кислот и аминокислот.

Энергию, необходимую для жизнедеятельности, большинство организмов получает в результате процессов окисления органических веществ, т.е. в результате катаболических реакций. Важнейшим соединением, выступающим в роли «топлива», является глюкоза.

Группы организмов по отношению к свободному кислороду

Организмы делятся на три группы:

  1. аэробы (облигатные аэробы) — организмы, способные жить только в кислородной среде (животные, растения, некоторые бактерии и грибы);
  2. анаэробы (облигатные анаэробы) — организмы, неспособные жить в кислородной среде (некоторые бактерии);
  3. факультативные формы (факультативные анаэробы) — организмы, способные жить как в присутствии кислорода, так и без него (некоторые бактерии и грибы).

У облигатных аэробов и факультативных анаэробов в присутствии кислорода катаболизм протекает в три этапа: подготовительный; бескислородный; кислородный. В результате органические вещества распадаются до неорганических соединений. У облигатных и факультативных анаэробов при недостатке кислорода катаболизм протекает в два первых этапа: подготовительный и бескислородный. В результате образуются промежуточные органические соединения, еще богатые энергией.

Этапы катаболизма

Первый этап — подготовительный — заключается в ферментативном расщеплении сложных органических соединений на более простые:

  • белки расщепляются до аминокислот;
  • жиры — до глицерина и жирных кислот;
  • полисахариды — до моносахаридов;
  • нуклеиновые кислоты — до нуклеотидов.

У многоклеточных организмов это происходит в желудочно-кишечном тракте, у одноклеточных — в лизосомах под действием гидролитических ферментов. Высвобождающаяся при этом энергия рассеивается в виде теплоты. Образовавшиеся органические соединения либо подвергаются дальнейшему окислению, либо используются клеткой для синтеза собственных органических соединений.

Второй этап — неполное окисление (бескислородный) — заключается в дальнейшем расщеплении органических веществ, осуществляется в цитоплазме клетки без участия кислорода.

Главный источник энергии в клетке — глюкоза. Бескислородное, неполное окисление глюкозы называют гликолизом . В результате гликолиза одной молекулы глюкозы образуется по две молекулы пировиноградной кислоты (ПВК, пируват) CH 3 COCOOH, АТФ и воды, а также атомы водорода, которые связываются молекулой-переносчиком НАД + и запасаются в виде НАД H.

Суммарная формула гликолиза имеет следующий вид:

C 6 H 12 O 6 + 2H 3 PO 4 + 2АДФ + 2НАД + → 2C 3 H 4 O 3 + 2H 2 O + 2АТФ + 2НАД H

CH 3 COCOOH → CO 2 + CH 3 COH
CH 3 COH + 2НАД H → C 2 H 5 OH + 2НАД + ,

либо в молочную кислоту (молочнокислое брожение наблюдается в клетках животных при недостатке кислорода)

CH 3 COCOOH + 2НАД H → C 3 H 6 O 3 + 2НАД +

При наличии в среде кислорода продукты гликолиза претерпевают дальнейшее расщепление до конечных продуктов.

Третий этап — полное окисление (дыхание) — заключается в окислении ПВК до углекислого газа и воды, осуществляется в митохондриях при обязательном участии кислорода. Этот этап состоит из трех стадий:

  1. образования ацетилкоэнзима A;
  2. окисления ацетилкоэнзима A в цикле Кребса;
  3. окислительного фосфорилирования в электронотранспортной цепи.

На первой стадии ПВК переносится из цитоплазмы в митохондрии, где взаимодействует с ферментами матрикса и образует: диоксид углерода, который выводится из клетки; атомы водорода, которые молекулами-переносчиками доставляются к внутренней мембране митохондрии; ацетилкофермент A (ацетил-KoА).

На второй стадии происходит окисление ацетилкоэнзима A в цикле Кребса. Цикл Кребса (цикл трикарбоновых кислот, цикл лимонной кислоты) — это цепь последовательных реакций, в ходе которых из одной молекулы ацетил-KoA образуются: две молекулы диоксид углерода; молекула АТФ; четыре пары атомов водорода, передаваемые на молекулы-переносчики — НАД и ФАД.

Таким образом, в результате гликолиза и цикла Кребса молекула глюкозы расщепляется до CO 2 , а высвободившаяся при этом энергия расходуется на синтез четырех АТФ и накапливается в десяти НАД H и четырех ФАД H 2 .

На третьей стадии атомы водорода с НАД H и ФАД H 2 окисляются молекулярным кислородом O 2 с образованием воды. Один НАД H способен образовывать три АТФ, а один ФАД H 2 — две АТФ. Таким образом, выделяющаяся при этом энергия запасается в виде еще 34АТФ.

Этот процесс протекает следующим образом. Атомы водорода концентрируются около наружной стороны внутренней мембраны митохондрии. Они теряют электроны, которые по цепи молекул-переносчиков (цитохромов ) электронотранспортной цепи (ЭТЦ) переносятся на внутреннюю сторону внутренней мембраны, где соединяются с молекулами кислорода:

O 2 + e — → O 2 —

В результате деятельности ферментов цепи переноса электронов внутренняя мембрана митохондрий изнутри заряжается отрицательно (за счет O 2 —), а снаружи — положительно (за счет H +). Таким образом между ее поверхностями создается разность потенциалов. Во внутреннюю мембрану митохондрий встроены молекулы фермента АТФ-синтетазы, обладающие ионным каналом. Когда разность потенциалов на мембране достигает критического уровня, положительно заряженные частицы H + силой электрического поля начинают проталкиваться через канал АТФазы и, оказавшись на внутренней поверхности мембраны, взаимодействуют с кислородом, образуя воду:

½O 2 — + 2H + → H 2 O

Энергия ионов водорода H + , транспортирующихся через ионный канал внутренней мембраны митохондрии, используется для фосфорилирования АДФ в АТФ:

АДФ + Ф → АТФ

Такое образование АТФ в митохондриях при участии кислорода называют окислительным фосфорилированием .

Суммарное уравнение расщепления глюкозы в процессе клеточного дыхания:

C 6 H 12 O 6 + 6O 2 + З8H 3 PO 4 + 38АДФ → 6CO 2 + 44H 2 O + 38АТФ

Таким образом, в ходе гликолиза образуются две молекулы АТФ, в ходе клеточного дыхания — еще 36АТФ, в целом при полном окислении глюкозы — 38АТФ.

А метаболизм – это основа всех процессов жизнедеятельности организма:

  • превращение энергии и веществ в живом организме, что позволяет клеткам, расти, развиваться и сохранять свою структуру;
  • обмен энергией и веществами между самим организмом и окружающей средой.

На скорость метаболических реакций оказывают влияние следующие факторы:

  • пол: основные метаболические процессы у мужчин протекают на 10 – 20 % выше, чем у женщин;
  • возраст: с 25 – 30 – ти лет скорость метаболических процессов снижается в среднем на 3%, это происходит каждые десять лет;
  • вес: чем выше общая масса внутренних органов, мышц и костей, тем выше будет катаболизм;
  • регулярные занятия спортом ускоряют метаболизм – в первые два – три часа в среднем на 30%, далее в течение суток – на 5%.

Процессы анаболизма и катаболизма

Анаболизм (пластический обмен) – это процесс создания новых клеток и их структур, органических веществ и тканей организма, сопровождающийся поглощением энергии.

Этот процесс способствует:

  • развитию и росту новых тканей, в том числе и мышц;
  • обновлению и восстановлению биологических структур (клеток, тканей);
  • минерализации костей.

Процессы анаболизма происходят в покое и под действием анаболических гормонов (инсулин, гормон роста, стероиды), а также веществ с анаболической активностью (аминокислоты, протеины и др.).

Клинические примеры анаболизма – рост ногтей, мышечной массы, заживление трещин костей.

Катаболизм (энергетический обмен) – противоположный анаболизму процесс расщепления сложных веществ, структур клеток, органов и тканей до простых веществ.

Этапы катаболизма происходят с образованием энергии в виде АТФ. Таким образом, важнейшая функция катаболизма — обеспечить организм необходимой энергией из продуктов питания и дальнейшее использование этой энергии в нуждах организма.

Катаболизм провоцируют:

  • голодание и др. ситуации, сопровождающиеся повышением концентрации адреналина;

Стадии катаболизма

  1. Крупные молекулы (белки, жиры и углеводы) расщепляются до простых молекул. Этот процесс происходит в желудочно-кишечном тракте, вне клетки.
  2. Во второй стадии простые молекулы поступают внутрь клетки, начинается образование энергии.
  3. Третья стадия – дыхания (с участием кислорода), заканчивается она образованием углекислого газа, воды и большого количества энергии.

Клинический пример катаболизма – сжигание жира — похудение.

Процессы анаболизма и катаболизма в организме могут находиться в двух состояниях: равновесия или временного преобладания друг над другом.

Преобладание анаболического процесса способствует накоплению массы и росту тканей, а катаболического – к разрушению тканевых структур и образованию энергии.

Соотношение равновесия или неравновесия анаболизма и катаболизма находится в зависимости от возраста:

  • У детей преобладают анаболические процессы;
  • У взрослых оба процесса находятся в равновесии, но их соотношение может меняться от состояния здоровья, физической и психо-эмоциональной нагрузки;
  • У пожилых преобладает процесс катаболизма.

Взаимосвязь анаболизма и катаболизма

Анаболизм и катаболизм – два абсолютно противоположных процесса, но несмотря на это, они тесно взаимосвязаны.

В результате катаболических реакций образуются вещества и энергия, которые используются при анаболическом процессе. А анаболизм осуществляет поставку ферментов и веществ, необходимых для катаболизма.

Так, например, организм человека может покрыть свою потребность в 14-ти аминокислотах . Дисбаланс этих процессов может привести к гибели организма.

Давайте разберемся, и чем он отличается от остальных добавок.

Научитесь . Это не так сложно, как кажется.

Что предпринять, чтобы убрать пивной живот? Для начала прочитать это: . Все о питании и нужных упражнениях.

Анаболизм и катаболизм в спорте

Физическая нагрузка – тренировка – это сильный стресс для организма. А как мы писали выше, это то, что нужно для запуска катаболической реакции. Тренировки вынуждают организм искать энергию не только в жирах, которые мы усиленно пытаемся сжечь, но и в белках.

Результатом такой катаболической реакции становится не только похудение, но и потеря мышечной массы в результате катаболизма мышц, что ужасно для спортсмена.

Поэтому, в спорте большое значение имеет катаболизм белков, при котором разрушаются протеин мышц до аминокислот. Главная задача спортсмена – ослабить катаболизм белков и запустить анаболизм. На таком принципе строится питание бодибилдеров, атлетов, комплексы спортивных добавок, режим отдыха.

Способы изменения метаболизма в сторону преобладания анаболических процессов:

Диета – увеличить потребление белковой пищи. Чем больше протеина, тем больше строительного материала для клеток и мышц. Стоит отметить, что протеин не будет так полезен, если еда будет низкокалорийной, т.к. будет не хватать энергии организму. Все должно быть сбалансировано.

Можно использовать в своем рационе аминокислотные добавки , они усваиваются быстрее белковых продуктов, т.к. не тратится время на их переваривание. Как результат, мышечные клетки получают быстрее строительный материал и соответственно быстрее восстанавливаются и увеличиваются в объеме.

Подавить катаболизм – непростая задача, но выполнимая: знать меру в тренировках (можно даже их сократить до 30 мин), много спать, не пропускать прием пищи, избегать стрессов и переутомлений.

Ускорить анаболизм с помощью допинга – специального набора гормонов, что не рекомендуется делать, т.к. он запрещен и вреден для организма (приводит к гормональному дисбалансу).

Динамическое равновесие анаболизма с катаболизмом обеспечивает правильный обмен веществ и хорошее самочувствие. Будьте здоровы!

Анаболизм и катаболизм – это процессы, выполняемые в нашем организме. Одни из них – процессы построения (анаболические), а другие – процессы деградации или разрушения (катаболические). Вероятно, многие из вас скажут, что анаболические процессы важнее и нужно снизить катаболические процессы до минимума.

Правда, однако, что процессы строения и деградации в организме зависят друг от друга, клетка не может существовать, если она только поглощает вещества, не синтезируя новые и наоборот. Анаболические и катаболические процессы строят единую биохимическую и энергетическую сущность метаболизма.

Вероятно, многие люди до сих пор не знают, что во время тренировки мы стимулируем катаболические процессы нашего тела, которые разрушают наши мышечные ткани. Для некоторых это может показаться странным, но если мы подумаем, то увидим логику. У нас не может быть процессов строительства, если мы не противопоставим им противоположное и они вызваны именно тренировкой мышц.

Короче говоря, мы разрушаем мышцы, чтобы они могли строиться и становиться все больше и сильнее. Хорошо знать, как на анаболические процессы влияет катаболизм и наоборот, потому что чем лучше мы знаем их зависимость, тем лучше результаты у нас в спортзале!

Анаболические процессы

Как мы уже говорили, анаболические процессы инициируются катаболическими процессами. Во время тренировок и обычных ежедневных занятий наш организм находится под напряжением и находится в катаболической фазе. Нормальный ответ организма на катаболические процессы – это процессы построения.

Анаболические процессы производятся в организме с энергией от проглоченной пищи, достаточным количеством покоя и гормонов: соматотропина, инсулиноподобного фактора роста, инсулина, тестостерона, эстрадиола. Этот процесс можно разделить на три этапа: синтез промежуточных соединений, синтез мономерных звеньев и синтез полимеров и мономеров. Проще говоря, движение от простого сложного с использованием доступной энергии организма.

Катаболические процессы

Катаболизм (деградация) – это процессы высвобождения энергии, при деградации веществ. Они определяются теплотворной способностью, обозначаемой как ккал / г (ккал / г вещества). Под влиянием катаболических процессов основные питательные вещества (белки, жиры и углеводы) деградируют до конечных продуктов: воды, CO2, аммиака, мочевины, мочевой кислоты и т. д., которые впоследствии выгружаются из организма через выделительную систему.

Статья по теме: Что такое духовный секс?

Катаболические процессы происходят во время физической активности и они на самом деле являются виновниками создания более сильных мышц и очистки подкожного жира.

Балансировка процессов

Многие люди пытаются остановить катаболические процессы или перестараться с ними (на тренировках) в идее получения максимальных результатов. Это не очень хороший подход, поскольку процессы зависят друг от друга. Чтобы максимизировать результаты, необходимо сбалансировать процессы анаболизма и катаболизма.

Мы должны напрячь наши мышцы и деградировать многие вещества, чтобы высвободить энергию, но мы также должны позволить нашему организму отдохнуть достаточно долго и получить необходимую пищу , чтобы преуспеть в восстановлении тканей и строительстве новых и более сильных. Когда человек тренируется слишком часто и недостаточно спит или недостаточно питается, у организма нет выбора, кроме как оставаться дольше в катаболической фазе и поэтому результаты уменьшаются или даже переходят от прогресса к регрессу!

Как добиться баланса

Самое главное – следить за прогрессом, чтобы знать, находимся ли мы на правильном пути (хорошо ли сбалансированы). Поделимся некоторыми вещами, которые следует иметь в виду и позволят минимизировать потери.

  • Не переутомляйтесь. Часто смущенные знакомыми, друзьями или журналами, мы меняем нашу программу до такой степени, что наше тело не прекращает тренировки 7 дней в неделю. Большинство людей будет думать, что когда они тренируются каждый день, у них будут лучшие результаты. Это может быть справедливо только в том случае, если вы позволите своему телу отдохнуть и восстановиться, что трудно сделать, если вы тяжело и продолжительно, немного спите или не едите достаточно.
  • Не пытайтесь подавить катаболические процессы . Потому что, как мы уже говорили несколько раз, они так же важны для вас, как и анаболические.
  • Если вы уменьшите свою тренировку или интенсивность, ваше тело будет иметь очень плохой катаболизм и не будет необходимости в создании процессов построения мышц. Если вы тренируетесь регулярно и серьезно, то не переусердствуйте, позвольте вашему телу использовать максимальное анаболическое окно. Попробуйте ложиться спать до 11 вечера, чтобы встать рано в 7 утра. Наше тело сконструировано так, что, когда солнце садится, оно переходит в анаболическую фазу, а когда солнце утром поднимается, анаболизм переходит к катаболизму, который длится в течение дня.
  • Избегайте эстрогенных продуктов (пищевые продукты, содержащие гормон эстроген): соевые бобы, продукты, обработанные пестицидами, говядина от мясников (эстроген добавляют в рацион коров, и он накапливается в клетках тела, соответственно есть, и в мясе, которое встречается в мясных магазинах). Органы по контролю за продуктами и лекарствами говорят, что они не позволяют использовать добавленные гормоны в свинине или домашней птице (курица, яйца, индейка), поэтому эти продукты не должны содержать эстроген. Тип пищи с эстрогенами будет склонять тело в пользу катаболических процессов, снижает количество анаболических гормонов (например, тестостерона) в сторону эстрогена.
  • Расслабьтесь . Физический и умственный стресс оказывают большое влияние на процессы тела. Попытайтесь избавиться от таких ситуаций или если вы не можете избежать их, попытайтесь расслабиться.
  • Избегайте сигарет, алкоголя и, конечно, всех видов наркотических веществ. Они не только замедлят ваш прогресс, но, как мы все знаем, это наносит ущерб вашему здоровью.
  • Ешьте продукты, богатые клетчаткой (цельнозерновые

Связь между катаболизмом и анаболизмом проявляется на трех уровнях - источников углерода, энергетическом и восстановительных реакций анаболизма.

На уровне источников углерода. Промежуточные продукты центральных путей катаболизма становятся субстратами для анаболических реакций, в процессе которых образуются структурные блоки, необходимые для синтеза макромолекул.

На энергетическом уровне. В процессе катаболизма вырабатывается метаболическая энергия в форме АТФ; анаболические же процессы, как правило, являются эндергоническими и потребляют АТФ.

На уровне восстановительной способности. Катаболические процессы являются в основном окислительными и служат донорами высокоэнергетических электронов, для анаболизма же характерно обратное. Основным донором электронов в восстановительных реакциях биосинтеза является НАДФН, восстановление которого происходит в реакциях катаболизма, большей частью в пентозофосфатном пути окисления глюкозы. Напомним существенное различие в функциях НАДФН и НАДН. При катаболизме образуются восстановленные формы как НАДФ + , так и НАД + , а при анаболизме потребляется почти исключительно НАДФН, в то время как НАДН служит донором высокоэнергетических электронов в процессах митохондриального окисления, сопряженного с синтезом АТФ. Основное различие в реакциях путей катаболизма и анаболизма заключается в том, что они редко повторяют друг друга.

Это совершенно очевидно, когда продукт катаболизма не идентичен тому источнику углерода, который используется в процессе анаболизма. Так, при синтезе многих аминокислот, например при распаде ароматических аминокислот, образуются ацетил-КоА и фумаровая или янтарная кислоты, тогда как для синтеза тех же аминокислот исходными продуктами служат фосфоенолпи- ровиноградная кислота и альдотетрозофосфат.

Иной представляется картина для обмена жирных кислот. Здесь катаболизм завершается образованием ацетил-КоА, а биосинтез начинается с того же самого промежуточного продукта и идет по пути, который на первый взгляд представляется простым повторением катаболической последовательности реакций в обратном порядке. В главе 23 было обращено внимание на то, что это далеко не так. Во-первых, ацетил-КоА должен сначала превратиться в более реакционноспособный малонил-КоА, который не является промежуточным продуктом при катаболизме; во-вторых, весь набор ферментов, ответственных за превращение малонил-КоА в ацил производные с более длинной цепью, отличается от набора ферментов, участвующих в катаболизме, и, наконец, в-третьих, эти ферменты локализованы совсем в другом компартмснтс клетки.

Даже при биосинтезе глюкозы, который протекает в основном по пути обращения целого ряда легко обратимых ферментативных реакций гликолиза, синтез отличается от распада в двух наиболее критических точках всей последовательной цепи реакций, а именно в начале и конце. Так, например, в процессе катаболизма глюкоза превращается в глюкозо-6-фосфат посредством реакции трансфосфорилирования с участием АТФ; однако при анаболизме она образуется из фосфорного эфира путем простого гидролиза. Пируват образуется катаболически из фосфоенолпирувата путем трансфосфорилирования - переноса фосфатной группы на АДФ; в анаболических же процессах он используется у большинства организмов благодаря двум связанным реакциям: сначала пируват карбоксилируется до оксалоацетата и только потом превращается в фосфоснолпируват.

Следует отметить, что разделение путей биосинтеза и распада имеет важное значение для эффективной регуляции метаболизма.

просмотров